LECTURE NOTES

ON

MATHEMATICS-II

ACADEMIC YEAR 2021-22

I B.TECH -II SEMISTER(R20)
D.SRAVANI SAI DURGA,Assitant Professor

DEPARTMENT OF HUMANITIES AND BASIC SCIENCES VSM COLLEGE OF ENGINEERING

RAMACHANDRAPURAM
E.G DISTRICT-533255

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA
 KAKINADA - 533 003, Andhra Pradesh, India
 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

I Year - II Semester	MATHEMATICS-II	L	T	P	C
	$\mathbf{3}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{3}$	

Course Objectives:

- To instruct the concept of Matrices in solving linear algebraic equations
- To elucidate the different numerical methods to solve nonlinear algebraic equations
- To disseminate the use of different numerical techniques for carrying out numerical integration.
- To equip the students with standard concepts and tools at an intermediate to advanced level mathematics to develop the confidence and ability among the students to handle various real world problems and their applications.
Course Outcomes: At the end of the course, the student will be able to
- develop the use of matrix algebra techniques that is needed by engineers for practical applications (L6)
- solve system of linear algebraic equations using Gauss elimination, Gauss Jordan, Gauss Seidel (L3)
- evaluate the approximate roots of polynomial and transcendental equations by different algorithms (L5)
- apply Newton's forward \& backward interpolation and Lagrange's formulae for equal and unequal intervals (L3)
- apply numerical integral techniques to different Engineering problems (L3)
- apply different algorithms for approximating the solutions of ordinary differential equations with initial conditions to its analytical computations (L3)

UNIT - I: Solving systems of linear equations, Eigen values and Eigen vectors: (10hrs)
Rank of a matrix by echelon form and normal form - Solving system of homogeneous and nonhomogeneous linear equations - Gauss Eliminationmethod - Eigen values and Eigen vectors and properties (article-2.14 in text book-1).

Unit - II: Cayley-Hamilton theorem and Quadratic forms:
(10hrs)
Cayley-Hamilton theorem (without proof) - Applications - Finding the inverse and power of a matrix by Cayley-Hamilton theorem - Reduction to Diagonal form - Quadratic forms and nature of the quadratic forms - Reduction of quadratic form to canonical forms by orthogonal transformation. Singular values of a matrix, singular value decomposition (text book-3).

UNIT - III: Iterative methods:

Introduction- Bisection method-Secant method - Method of false position- Iteration method -Newton-Raphson method (One variable and simultaneous Equations) - Jacobi and Gauss-Seidel methods for solving system of equations numerically.

UNIT - IV: Interpolation:
(10 hrs)
Introduction- Errors in polynomial interpolation - Finite differences- Forward differencesBackward differences -Central differences - Relations between operators - Newton's forward and backward formulae for interpolation - Interpolation with unequal intervals - Lagrange's interpolation formula- Newton's divide difference formula.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA
 KAKINADA - 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

UNIT - V: Numerical differentiation and integration, Solution of ordinary differential equations with initial conditions:
(10 hrs)
Numerical differentiation using interpolating polynomial - Trapezoidal rule- Simpson's $1 / 3^{\text {rd }}$ and $3 / 8^{\text {th }}$ rule- Solution of initial value problems by Taylor's series- Picard's method of successive approximations- Euler's method - Runge-Kutta method (second and fourth order).

Text Books:

1. B. S. Grewal, Higher Engineering Mathematics, $44^{\text {th }}$ Edition, Khanna Publishers.
2. B. V. Ramana,Higher Engineering Mathematics, 2007 Edition, Tata Mc. Graw Hill Education.
3. David Poole, Linear Algebra- A modern introduction, $4^{\text {th }}$ Edition, Cengage.

Reference Books:

1. Steven C. Chapra, Applied Numerical Methods with MATLAB for Engineering and Science,Tata Mc. Graw Hill Education.
2. M. K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering Computation, New Age International Publications.
3. Lawrence Turyn, Advanced Engineering Mathematics, CRC Press.

VSM COLLEGE OF ENGINEERING RAMACHANDRAPRUM-533255
 DEPARTMENT OF HUMANITIES AND BASIC SCIENCES

Course Title	Year-Sem	Branch	Contact Periods/Week	Sections
Mathematics-II	$1-2$	Electrical \& electronics Engineering	6	-

COURSE OUTCOMES: At the end of the course, the student will be able to

1. Develop the use of matrix algebra techniques that is needed by engineers for practical applications(K2)
2. Solve system of linear algebraic equations using Gauss elimination, Gauss Jordan, Gauss Seidel(K1)
3. Evaluate the approximate roots of polynomial and transcendental equations by differentalgorithms (K3)
4. Apply Newton's forward \& backward interpolation and Lagrange's formulae for equal andunequal intervals (K2)
5. Apply numerical integral techniques to different Engineering problems (K3)
6. Apply different algorithms for approximating the solutions of ordinary differential equations withinitial conditions to its analytical computations (K4)

$\begin{aligned} & \hline \text { Uni } \\ & \mathfrak{t} / \\ & \text { ite } \\ & \mathbf{m} \\ & \text { No. } \end{aligned}$	Outcomes		Topic	Number of periods	Total perio ds	Book Refere nce	Delivery Method
1	CO1: Solving systems of linear equations, Eigen values and Eigen vectors	UNIT-1			10	T1,T3, R2	 Talk, \& Tutorial
		1.1	Rank of a matrix by echelon form and normal form	2			
		1.2	Solving system of homogeneous and	2			
		1.3	non- homogeneous linear equations	2			
		1.4	Gauss Eliminationmethod.	2			
		1.5	Eigen values and Eigen vectors and properties	2			
2	CO2: Cayley-Hamilton theorem and Quadratic forms	UNIT-2			10	$\begin{gathered} \mathrm{T} 1, \mathrm{~T} 3, \\ \mathrm{R} 2 \end{gathered}$	 Tutorial
		2.1	Cayley-Hamilton theorem (without proof) -- Applications	2			
		2.2	Finding the inverse and power of a matrix by Cayley-Hamilton theorem	2			
		2.3	Reduction to Diagonal form Quadratic forms and nature of the quadratic forms	2			
		2.4	Reduction of quadratic form to canonical forms by orthogonal transformation.	2			
		2.5	Singular values of a matrix, singular value decomposition	2			

LIST OF TEXT BOOKS AND AUTHORS

Text Books:

1. B.S Grewal, Higher Engineering Mathematics, 44th Edition, Khanna Publishers.
2. B.V.Ramana,Higher Engineering Mathematics, 2007 Edition, Tata Mc. Graw HillEducation.
3. David Poole, Linear Algebra- A modern introduction, 4 thEdition, Cengage.

Reference Books:

R1. Steven C. Chapra, Applied Numerical Methods with MATLAB for Engineering andScience,Tata Mc. Graw Hill Education. R2. M. K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and EngineeringComputation, New Age International Publications.
R3. Lawrence Turyn, Advanced Engineering Mathematics, CRC Press.
unit-1
Linear System of equations
Real and complex matrices and linear system of Equation"
Syatrix Definition:-
A. System of mn numbers (real and Complex) arranged in the form of an ordered set of m rows, each now consisting of an ordered set of n numbers between [] or () or $11 / 11$ is called a matrix of order (or) type man

Each of mn numbers constituting the man matrix is called an element of the matrix. Thus we write a matniü

$$
A=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{1 n} \\
a_{21} & a_{22} & a_{2 n} \\
\hdashline & & \\
a_{m 1} & a_{m 2} & \cdots
\end{array} a_{m \times n} \quad \begin{array}{ll}
a_{i j}
\end{array}\right]_{m \times n} \quad \begin{aligned}
& \text { where } \\
&
\end{aligned}
$$

In relation to a matrix, we call the $1 \leq j \leq n$ numbers as a scalars.

Type of Matrices
Definition:-

1. If $A=\left[a_{i j}\right]_{m \times n}$ and $m=n$, then A is called a * square matrix. A square matrix A of order
$n \times n$ is something called as a n-rowed motrin. A (or) simply a square matrix of order n E:g:- $\left[\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right]$ is $2^{\text {nd }}$ order motrin
2. A matrix which is not a square matrix is called a rectangular matrix
Eg:- $\left[\begin{array}{rrr}1 & -1 & 2 \\ 2 & 3 & 4\end{array}\right]$ is a 2×3 matrix
3. A matrix of order $1 \times \mathrm{m}$ is called a row matrix
Eg:- $\left.\begin{array}{lll}1 & 2 & 3\end{array}\right] 1 \times 3$
4. A matrix of order $n \times 1$ is called a column matrix

Eg:- $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]_{3 \times 1}$ column matrices are also called as * Row and column matrices vectors respectively
row and column vector
5. If $A=\left[a_{i j}\right]_{n \times n}$ such that $a_{i j}=1 \quad f_{o r} i=j$ and
$\therefore a_{i j}=0$ for $i \neq j$, then A is called a unit matrix It is denoted by In.

$$
\text { Eg: } I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], I_{3}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & r & 0 \\
0 & 0 & 1
\end{array}\right]
$$

6. If $A=\left[a_{i j}\right]_{\text {man }}$ such that $a_{i j}=0 \forall i$ and j then A is called zero matrix tor) a Null matrix. It is denoted by ' 0 ' (or) more clearly. $\operatorname{lman}_{\mathrm{Fg}:} l_{2 \times 3}=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]_{2 \times 3}$
\Rightarrow Diagonal element of a square matrix and Principal diagonal
Definition:-
7. In a matrix $A=\left[a_{i j}\right]_{n \times n}$, the elements $a_{9 j}$ of A for which $i=j$ (i.e., $a_{91}, a_{22}, \ldots a_{n n}$) are called the diagonal element of A. The line along which. the diagonal elements lie is called the Prineppal diagonal of A.
8. A square matrix of all whose element except those in leading diagonal ore zero is called. diagonal matrix. If $d_{1} i d_{2}:-d_{n}$ are diagonal element of a diagonal matrix. A, then A is written as

$$
A=\operatorname{diag}\left(d_{1}, d_{2}, \ldots-d_{n}\right)
$$

$$
\begin{aligned}
& A=\operatorname{diag}\left(d_{1}, d_{2}, \cdots-d_{n}\right) \\
& E x:-A=\operatorname{diag}(3,1,-2)=\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right]
\end{aligned}
$$

3. A diagonal matrix whose leading diagonal elements are equal called a scalar matrix.

$$
\text { Ex: } \quad B=\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

Equal Matrix:-
Two matrices $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ ore said to be equal if and only if: $\Rightarrow A \& B$ are of the same type (or order.) $\Rightarrow a_{i j}=b_{i j}$ for every i and j

Algebra of Matrices:
Let $A=\left[a_{i j}\right]_{\text {man }}, B=\left[b_{i j}\right]_{m \times n}$ between be two matrix $c=\left[c_{i j}\right]_{m \times n}$ where $c_{i j}=a_{i j}+b_{i j}$. is called the sum of the matrices A and B the sum of A and B is called and denoted by $A+B$
Thus

$$
\begin{gathered}
{\left[a_{i j}\right]_{m \times n}+\left[b_{i j}\right]_{m \times n}=\left[a_{i j}+b_{i j}\right]_{m \times n} \text { and }} \\
{\left[a_{i j}\right]_{m \times n}+\left[b_{i j}\right]_{m \times n}}
\end{gathered}
$$

Difference of two matrices If A, B are two matrices of the some type Corder) then $A+(-B)$ is taken as $A-B$ Multiplication of a matrix by a scalar

Let A be a matrix. The matrix ablained by. matrix multiplying every element of A by k. a scalar is called the product of A by k and is denoted by $K A(o r) A K$

Thus if $A=\left[a_{i j}\right]_{m \times n}$, then
$\Rightarrow O A=O$ (null matrix), (-1) $A=-A$, called the
Properties: negative of A.

$$
\begin{aligned}
\Rightarrow & \text { negative of } A \\
\Rightarrow & k_{1}\left(k_{2} A\right)=\left(k_{1} k_{2}\right) A=k_{2}\left(k_{r} A\right) \text { where } k_{1}, k_{2} \text { are } \\
\Rightarrow & \text { scalars } \\
& k A=0 \Rightarrow A=0 \text { if } k \neq 0
\end{aligned}
$$

iv) $k_{1} A=k_{2} A$ and n is not a null matrix $\Rightarrow k_{1}=k_{2}$ Matrix fuultiplication

Let $A=\left[a_{i} k\right]_{m \times n}$ and $B \neq\left[b k_{j}\right]_{n \times p}$, then the matrix $c=\left[c_{i j}\right]_{\operatorname{mxp}}$ where $c_{i j}=\sum_{K=1}^{n} a_{i k} \quad \cdot b k_{j}$ is called the product of the matrices A and B in that order and we write $C=A B$

In the product $A B$, the matrix A is called the pre-factor and B the post-factor

If the number of coloumins of A is equal to the number of rows in B then the motrices are said to be comfortable for multiplication in that order
Positive Integral powers of square Matrices.
Let A be a square matrix then A^{2} is. defined as A.A Now, by the Associative law $A^{2} A=(A \cdot A) A=A\left(A A_{1}\right)=A \cdot A^{2}$ so that we can write

$$
A^{2} A=A A^{2}=A \cdot A \cdot A=A^{3}
$$

similarly we hove $A A^{m-1}=A^{m-1} A=A^{m}$
where m is a positive integer
further we have $A^{m} A^{n}=A^{m+n}$ and $\left(A^{m}\right)^{n}=A^{m n}$ where m, n ore positive integer
Note:.

$$
I^{n}=I ; 0^{n}=0
$$

Trace of a Square Matrix
Let $A=\left[a_{i j}\right]_{\text {nom }}$ then -trace of the square matrix A is define as $\sum_{i=1}^{n} a_{i i}$ and is denoted by $\operatorname{tr}(A)$
Thus $\operatorname{tr}(A)=\sum_{i=1}^{n} a_{i j}=a_{11}+a_{22}+\cdots+a_{n n}$

* Properties:

If A and B ore square matrices of other n and is any scalar then

$$
\begin{aligned}
& \Rightarrow \quad \operatorname{tr}(1 A)=\operatorname{trg} A \\
& \Rightarrow \quad \operatorname{tr}(A+B)=\operatorname{tr} A+\operatorname{tr} B \\
& \Rightarrow \quad \operatorname{tr}(A B)=\operatorname{tr}(B A)
\end{aligned}
$$

Triangular fuatrix
A square matrix all of whose elemen below the leading diagonal are zero is called an upper triangular matrix. A square matrix all of whose elements above the leading diagonal are zero is called a lower triangular matrix

Ex: $\quad\left[\begin{array}{cccc}1 & 2 & -3 & 0 \\ 0 & 4 & 2 & 1 \\ 0 & 0 & -6 & 2 \\ 0 & 0 & 0 & 8\end{array}\right]$ is is an upper triangular matrix
and $\left[\begin{array}{ccccc}7 & 0 & 0 & 0 & 0 \\ 5 & 3 & 0 & 0 & 0 \\ -4 & 6 & 0 & 0 & 0 \\ 2 & +1 & -8 & 5 & 0 \\ 2 & 0 & 4 & 1 & 6\end{array}\right]$ is an lower triangular
\Rightarrow If A is a square matrix such that $A^{2}=A$ then A is called idempotent
\Rightarrow If A_{1} is a square matrix such that $A^{m}=0$ where M is a positive integer, then A is. called wilpotent. If M is least positive integer such that ' A M $=0$, then A is called, 'Nilpotent. of index. M.
\Rightarrow If A is a square matrixil such that $A^{2}=I$ then A is called involuntery
The transpose of a Matrix
Definition:
The matrix obtained from any given matrix A by inter changing its row's and columns is called the transpose of A. It is denoted by A^{\prime} or A^{J} If $A=\left[a_{i j}\right]_{m \times n}$, then the transpose of A is

$$
A^{\prime}=\left[b_{j i}\right]_{n \times m}, \text { where } b_{j i}=a_{i j}
$$

Also (A!) $=A_{1}$
Note: .
If A^{\prime} and B^{\prime} be the transpose of A^{\prime} and B respec, tively, then

$$
\Rightarrow\left(A^{\prime}\right)^{\prime}=A
$$

$\Rightarrow(A+B)^{\prime}=A^{\prime}+B^{\prime}, A$ and B being of the
$\Rightarrow(k A)=k A^{\prime}, k i s$ a scalar
$\Rightarrow(A B)^{\prime}=B^{\prime} A^{\prime}, A \&_{B}$ being conformable for multiplication.

Determinants:.
Minors and co factors of a square Matrix
let $n=\left[a_{i j}\right]_{n \times m}$ be a square matrix. when from A the elements of , th row and $j^{\text {th }}$ column are deleted the detenmenant of $(n-1)$ rows matrix May is called the minor of aij of A and is denoted by Imigl. The signed minor (-1) -i ty |mijl is called the co factor of $a_{i j}$ and is denoted by Ai

$$
\begin{aligned}
& \text { Thus of } A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \text { then } \\
& |A|=a_{11}\left|m_{11}\right|+a_{12}\left|m_{12}\right|+a_{13}\left|M_{13}\right| \\
& =a_{11} \mid A_{11}+a_{12} A_{112}+a_{13} A_{13}
\end{aligned}
$$

Notes:

1. Determinant of the square matrix A^{\prime} can be

$$
\begin{aligned}
& \text { defined as } \\
& |A|=a_{21} A_{21}+a_{22} A_{22}+a_{23} A_{23}=a_{31} A_{31}+a_{32} A_{32} \\
& \\
& +a_{3,3} A_{33}
\end{aligned}
$$

$$
|A|=a_{11} A_{11}+a_{21} A_{21}+a_{31} A_{31}=a_{12} A_{12}+a_{22} A_{22} \text {. }
$$

(or)

$$
+a_{32} A_{32}
$$

$$
=a_{13} A_{13}+a_{23} A_{23}+a_{33} A_{33}
$$

Therefore in a determinant the sum of the products of the elements of any row or column with their are corresponding co-factors is called to the value of the determinant
2. If A is a square matrix of order n then.
$|k A|=k n|A|$, where k is a. scalan
3. If A is a square matrix of order n, then

$$
|A|=\left|A A^{T}\right|
$$

4. If A and B be two square matrices of the same order then $|A B|=|A| \cdot|B|$

* Adjoint of a Square flatrix

Let A be a square matrix of order n The transpose of the matrix got from, A by replacing the elements of A by the corresponding co-factors is called the adjoint of A and is denoted by adj A
Note: For any scalar $k, \operatorname{adj}(k A)=k^{n-1} \operatorname{adj} A$ * Singular and fvon-Singular matrices:

Definations:
A square matrix A is is said to be singular if $|A|=0$ if $|A| \neq 0$, then A is said to be non-Singulan. Thus only non -singular matrix possess inverses.

Note:-
If A, B are non -singular then $A B$, the product is also non-singulan matrixes is also non singular
Inverse of a Matrix:
let A be any square matrix B it it exists such that $A B=B A=I$, then B is called inverse of A and is denoted by A^{-1}

Note:-
For $A B, B A$ to be both defined and equal it is necessary that A and B are both square matrices of same order thus a non-square matrix cannot hove inverse.

Invertible
A matrix is said to be inverting if it Possess inverse.

Crammer's Rule (Determinant)
suethod
The solution of the system of linear equation

$$
\begin{aligned}
& a_{1} x+b_{1} y+c_{1} z=d_{1} ; \\
& a_{2} x+b_{2} y+c_{2} z=d_{2} ; \\
& a_{3} x+b_{3} y+c_{3} z=d_{3} ; \text { is given by } \\
& x=\frac{\Delta_{1}}{\Delta} \Rightarrow-1=\frac{\Delta_{2}}{\Delta} ; z=\frac{\Delta_{3}}{\Delta} \cdot(\Delta \neq 0) \text {, where }
\end{aligned}
$$

$$
\begin{aligned}
& \Delta=\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right| ; \Delta_{1}=\left|\begin{array}{lll}
d_{1} & b_{1} & c_{1} \\
d_{2} & b_{2} & c_{2} \\
d_{3} & b_{3} & c_{3}
\end{array}\right| \\
& \Delta_{2}=\left|\begin{array}{lll}
a_{1} & d_{1} & c_{1} \\
a_{2} & d_{2} & c_{2} \\
a_{3} & d_{3} & c_{3}
\end{array}\right| ; \quad \Delta_{3}=\left|\begin{array}{lll}
a_{1} & b_{1} & d_{1} \\
a_{2} & b_{2} & d_{2} \\
a_{3} & b_{3} & d_{3}
\end{array}\right|
\end{aligned}
$$

we notice that $\Delta_{1}, \Delta_{2}, \Delta_{3}$ are the determinant obtained from Δ on replacing the 1 st, 2 and $3^{\text {rd }}$ columns by d^{\prime} values respectively
symmetric Suatrix:-
A square matrix $A^{\prime}=\left[a_{i j}\right]$. is said to be symmetric if $a_{i j}=a_{j i}$ for every i and j Thus, A is a symmetric matrix $\Leftrightarrow A=A^{\prime}$ or

$$
A^{\prime}=A
$$

Skew - Symmetric Matrix
A square matrix $A=\left[a_{i j}\right]$ is said to be Skew symmetric if $a_{i j}=a_{j i}$, for every i and j Thus A is a skew symmetric matrix $\Leftrightarrow A=A$ $A^{\prime}=A$

Note:-
Every diagonal element of a skew-symmetrix matrix is necessarily zero since,

$$
a_{i i}=-a_{i i} \Rightarrow a_{i 0}=0
$$

Ex: $\left[\begin{array}{ccc}a, & h, & g \\ h, & b, & f \\ g, & f, & c\end{array}\right] i s, a \quad$ symmetric matrix
$\left[\begin{array}{cc:c}0 & a & -b \\ -a & 0 & c \\ b & -c & 0\end{array}\right]$ is a skew-symmetric matrix
Properties:-
v) A is symmetric

* kA is symmetric

2) A is skew -symmetric
rok is skew- symmetric
Orthogonal fuatrix
A square matrix ' A ' is said to be orthogonal. $\mid A A=A^{\prime} A,=I$, that is $A T=A^{-1}$

Solved Examples

1. proved that $\left[\begin{array}{ccc}\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} & \frac{-2}{3}\end{array}\right]$ is orthogonal

Solus $A=\left[\begin{array}{ccc}\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} & \frac{-2}{3} \\ \frac{2}{3} & \frac{-2}{3} & \frac{1}{3}\end{array}\right]$

$$
A^{\top}=\left[\begin{array}{ccc}
\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\
\frac{2}{3} & \frac{1}{3} & \frac{2}{3} \\
\frac{2}{3} & \frac{-2}{3} & \frac{1}{3}
\end{array}\right]
$$

$$
\begin{aligned}
A \cdot A T & =\left[\begin{array}{ccc}
\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\
\frac{2}{3} & \frac{1}{3} & \frac{-2}{3} \\
\frac{2}{3} & \frac{-2}{3} & \frac{r}{3}
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\
\frac{2}{3} & \frac{1}{3} & \frac{-2}{3} \\
\frac{2}{3} & \frac{-2}{3} & \frac{1}{3}
\end{array}\right] \\
& =\left[\begin{array}{lll}
\frac{1}{9}+\frac{4}{9}+\frac{4}{9} & \frac{2}{9}+\frac{2}{9}-\frac{4}{9} & \frac{2}{9}-\frac{4}{9}+\frac{2}{9} \\
\frac{2}{9}+\frac{2}{9}-\frac{4}{9} & \frac{4}{9}+\frac{1}{9}+\frac{4}{9} & \frac{4}{9}-\frac{2}{9}-\frac{2}{9} \\
\frac{2}{9}+\frac{4}{9}+\frac{2}{9} & \frac{4}{9}-\frac{2}{9}-\frac{2}{9} & \frac{4}{9}+\frac{4}{9}+\frac{1}{4}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=I_{3}
\end{aligned}
$$

$$
A \cdot A A^{\top}=I_{3}
$$

\therefore Given matrix is an orthogonal
2. $\left[\begin{array}{ccc}2 & -3 & 1 \\ 4 & 3 & 1 \\ 3 & 1 & 9\end{array}\right]$ is orthogonal

Solus \quad Let $A=\left[\begin{array}{ccc}2 & -3 & 1 \\ 4 & 3 & 1 \\ 3 & 1 & 4\end{array}\right], \quad A^{\top}=\left[\begin{array}{ccc}2 & 4 & -3 \\ -3 & 3 & 1 \\ 1 & 1 & 9\end{array}\right]$

$$
\begin{aligned}
& A \cdot A^{T}=\left[\begin{array}{ccc}
2 & -3 & 1 \\
4 & 3 & 1 \\
3 & 9 & 9
\end{array}\right]\left[\begin{array}{ccc}
2 & 4 & -3 \\
-3 & 3 & 1 \\
1 & 1 & 9
\end{array}\right] \\
&=\left[\begin{array}{ccc}
4+9+1 & 8-9+1 & -6-3+9 \\
8-9+1 & 16+9+1 & -12+3+9 \\
-6-3+9 & -12+3+9 & 9+1+81
\end{array}\right] \\
&=\left[\begin{array}{ccc}
14 & 0 & 0 \\
0 & 26 & 0 \\
0 & 0 & 91
\end{array}\right] \neq I_{3}
\end{aligned}
$$

Given matrix is not an orthogonal
3 . Find the values of A, B and C when $\left[\begin{array}{ccc}0 & 2 b & c \\ a & b & -c \\ a & -b & c\end{array}\right]$ is orthogonal
Solve Let $A=\left[\begin{array}{ccc}0 & 2 b & c \\ a & b & -c \\ a & -b & c\end{array}\right], A^{\top}=\left[\begin{array}{ccc}0 & a & a \\ 2 b & b & -b \\ c & -c & c\end{array}\right]$

$$
\begin{aligned}
& A \cdot A^{\top}=\left[\begin{array}{ccc}
0 & 2 b & c \\
a & b & c \\
a & -b & c
\end{array}\right]\left[\begin{array}{ccc}
0 & a & a \\
2 b & b^{1} & -b \\
c & -c & c
\end{array}\right] \\
& =\left[\begin{array}{ccc}
0+4 b^{2}+c^{2} & 0+2 b^{2}-c^{2} & 0-2 b^{2}+c^{2} \\
0+2 b^{2}-c^{2} & a^{2}+b^{2}+c^{2} & a^{2}-b^{2}-c^{2} \\
0-2 b^{2}+c^{2} & a^{2}-b^{2}-c^{2} & a^{2}-b^{2}+c^{2}
\end{array}\right]
\end{aligned}
$$

Given that $A \cdot A^{\top}=I_{3}$

$$
\begin{align*}
& =\left[\begin{array}{ccc}
4 b^{2}+c & 2 b^{2}-c^{2} & -2 b^{2}+c^{2} \\
2 b^{2} c^{2} & a^{2}+b^{2}+c^{2} & a^{2}-b^{2}-c^{2} \\
-2 b^{2}+c^{2} & a^{2}-b^{2}-c^{2} & a^{2}+b^{2}+c^{2}
\end{array}\right] \\
& =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \Rightarrow \begin{array}{ll}
2 b^{2}-c^{2}=0 \rightarrow \\
a^{2}-b^{2}-c^{2}=0 \rightarrow 1 \\
4 b^{2}+c^{2}=1 \rightarrow 0 \\
a^{2}+b^{2}+c^{2}=1 \rightarrow
\end{array} \tag{1}
\end{align*}
$$

from (i)

$$
\begin{align*}
& 2 b^{2}-c^{2}=0 \tag{4}\\
& c^{2}=2 b^{2}
\end{align*}
$$

from (2)

$$
\begin{array}{l|l}
a^{2}-b^{2}-c^{2}=0 & a^{2}=3 b^{2} \\
a^{2}-b^{2}-2 b^{2}=0 & a=\sqrt{3} b
\end{array}
$$

Rank of a Matrix

* If A is a null matrix we define its rank will be "zero". If A
* If A is a non zero matrix we say that R is the rank of A if the following conditions are satisfied

1. Every $(y+1)^{\text {th }}$ order minor of A is zero
2. There exsist atleast one fth orden minor of A which is not zero
3. Rank of A is denoted by " $C(A)$ "

Note:

* Every matrix will have a rank
* Rank of a matrix is unique
* Rank of A is ≥ 1 when A is a non-zero
* If A is a matrix of onden $m \times n$ then rank of A matrix
* If rank of $A=r$ then every minor of A of order $(r+1)$ or mores zero:
* rank of the Identity matrix In is ' n '
* If A is matrix of order ' n ' and a is non. singular $(|A| \neq 0)$ then rank of $A=n$.

1. Find the rank of the matrix

$$
\text { i) } A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
3 & 4 & 4 \\
7 & 10 & 12
\end{array}\right] \quad \text { ip }\left[\begin{array}{ccc}
3 & -1 & 2 \\
-6 & 2 & 4 \\
-3 & 1 & 2
\end{array}\right]
$$

Solus i) Given matrix

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
3 & 4 & 4 \\
7 & 10 & 12
\end{array}\right] \\
&|A|=1(48-40)-2(36-28)+3(30-28) \\
&=8-16+6 \\
&=-2 \neq 0 \\
& \therefore P(A)=3
\end{aligned}
$$

ii) $|A|=\left|\begin{array}{ccc}3 & -1 & 2 \\ -6 & 2 & 4 \\ -3 & 1 & 2\end{array}\right|$

$$
\begin{aligned}
& |A|=3(u-u)+1(-12+12)+2(-6+6) \\
& |A|=0
\end{aligned}
$$

A minor of order 2×2 of A is $\left|\begin{array}{cc}3 & -1 \\ -6 & 2\end{array}\right|=6-6=0$

$$
C(A)<3
$$ $\left.\begin{array}{llll}1 & 1, & \cdots & -14 \\ 1 & n_{1} \\ 2 & 4\end{array} \right\rvert\,=-4-4=-8$

$$
\left.\begin{array}{c}
e(A)=2 \\
\text { iii ii. } \\
H \cdot W
\end{array}\left[\begin{array}{ccc}
-1 & 0 & 6 \\
3 & 6 & 1 \\
-5 & 1 & 3
\end{array}\right] \quad \text { iv) }\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 4 & 5 \\
4 & 5 & 6
\end{array}\right] \quad v\right)\left[\begin{array}{cccc}
2 & -1 & 3 & 1 \\
1 & 4 & -2 & 1 \\
5 & 2 & 4 & 3
\end{array}\right]
$$

Solus iris) Given matrix.

$$
\begin{aligned}
A & =\left[\begin{array}{ccc}
-1 & 0 & 6 \\
3 & 6 & 1 \\
-5 & 1 & 3
\end{array}\right] \\
|A| & =\left[\begin{array}{ccc}
-1 & 0 & 6 \\
3 & 6 & 1 \\
-5 & 1 & 3
\end{array}\right] \\
& =-1(18 \neq 5)-0(9+5)+6(3+30) \\
& =-1(27)-0+6(33) \\
& =-27+198 \\
|A| & =18 \$ \neq 0 \\
\therefore & P(A)=3
\end{aligned}
$$

iv) Given matrix,

$$
\begin{aligned}
A & =\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 4 & 5 \\
4 & 5 & 6
\end{array}\right] \\
|A| & =\left[\left.\begin{array}{lll}
1 & 2 & 3 \\
3 & 4 & 5 \\
4 & 5 & 6
\end{array} \right\rvert\,\right. \\
& =1(24-25)-2(18-20)+3(15-16) \\
& =1(-1)-2(-2)+3(-1) \\
& =-1+4-3 \\
|A| & =0
\end{aligned}
$$

$$
\rho(A)<3
$$

A minor of order 2×2 of A is $\left|\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right|$

$$
\begin{aligned}
& =4-6=-2 \neq 0 \\
& \rho(A)=2
\end{aligned}
$$

v) Given matrix

$$
\left[\begin{array}{cccc}
2 & -1 & 3 & 1 \\
1 & 4 & -2 & 1 \\
5 & 2 & 4 & 3
\end{array}\right]_{A} \Rightarrow \operatorname{An}\left|\begin{array}{ccc}
3 & -1 & 3 \\
1 & 4 & -2 \\
5 & 2 & 4
\end{array}\right|
$$

Here A mentor of 3×3 nt A is

$$
\begin{array}{rlrl}
\text { Here } A \text { moror of } \\
|A| & =2(16+4)+1(4+10)+3(2-20) & e(A) \leq \text { incur }) \\
& =2(20)+1(14)+3(-12) & e(A) & =3 \\
& =40+14-54 & \\
|A| & =0 & &
\end{array}
$$

A minor of order 2×2 of A is $\left|\begin{array}{ccc}-1 & 3 & 1 \\ 4 & -2 & 1 \\ 3 & 4 & 3\end{array}\right|$

$$
\begin{aligned}
|A| & =-1(-6-v)-3(12-2)+1(16+0) \\
& =-1(-10)-3(10)+1(20) \\
& =10-30+20
\end{aligned}
$$

$$
|4|=0
$$

- A minor of order 3×3 of A is $\left|\begin{array}{ccc}2 & 3 & 1 \\ 1 & -2 & 1 \\ 5 & 4 & 3\end{array}\right|$

$$
\begin{aligned}
|A| & =2(-6-U)-3(3-5)+1(4+10) \\
& =2(-10)-3(-2)+1(i 4) \\
& =-20+6+14 \\
& =-3 \theta+20 \\
|A| & =12 \neq 10=0 \\
e(\mid A) & =2 \\
\left.|A|=\left|\begin{array}{ccc}
2 & -1 & 1 \\
1 & 4 & 1 \\
5 & 2 & 3
\end{array}\right|=2(12-23)+1(3-5)+1(2-2) \right\rvert\, & =2(10)+3(-3)+1(-18) \\
& =20-6-18 \\
& =0
\end{aligned}
$$

Now A minor of order 2×2 of A is

$$
\begin{aligned}
& \left|\begin{array}{cc}
2 & -1 \\
1 & 4
\end{array}\right|=8+1=9 \neq 0 \\
& \rho(A)=2
\end{aligned}
$$

14) From (3)

$$
\begin{aligned}
& 4 b^{2}+c^{2}=1 \\
& 4 b^{2}+2 b^{2}=1 \\
& 6 b^{2}=1 \\
& b^{2}=\frac{1}{6} \\
& b=\frac{1}{\sqrt{6}} \\
& c^{2}=2 b^{2}=2 \cdot \frac{1}{b 3}=\frac{1}{3} \Rightarrow c=\frac{1}{\sqrt{3}} \\
& a=\sqrt{3}, b=\frac{1}{\sqrt{6}}, c=\frac{1}{\sqrt{3}}
\end{aligned}
$$

Date
251112018
Conjugate of the fuatrix
The matrix obtained from any given matrix A are replacing its elements by the co-dres Bonding Conjugate Complex Numbers is called the Conjugate of A. It is denoted by \bar{A}.'

$$
\begin{aligned}
\text { Ex: } A & =\left[\begin{array}{ccc}
2+3 i & 0 & i \\
i+2 & 2 i-3 & 7
\end{array}\right] \\
\bar{A} & =\left[\begin{array}{ccc}
2-3 i & 0 & -i \\
-i+2 & -2 i-3 & 7
\end{array}\right]
\end{aligned}
$$

tote:

1. If F and \bar{B} be the, conjugates of A and B respectively then

$$
\begin{aligned}
& *(\overline{\bar{A}})=A \\
& *(\overline{A \pm B)}=\bar{A} \pm \bar{B} \\
& *(\overline{K A})=\bar{K} \bar{A} \\
& *(\overline{A B})=\bar{A} \cdot \bar{B}
\end{aligned}
$$

The transpose of the conjugate of a square matrix

* If A is a square matrix and its conjugate is \bar{A} then the transpose of \bar{A} is $(\bar{A})^{\top}$
* The transposed conjugate of A is denoted by (transposed) ' A "'
* Therefore $(\bar{A})^{\top}=\left(\overline{A^{\top}}\right)=A \theta$

$$
\begin{aligned}
& \text { Ex:. } \quad A=\left[\begin{array}{lll}
5 & 3-i & -2 i \\
6 & 1+i & 4-i
\end{array}\right] \\
& \bar{A}=\left[\begin{array}{rrr}
5 & 3+i & 2 i \\
6 & 1-i & 4+i
\end{array}\right] \\
& \left(\bar{A}_{1}\right)=\left[\begin{array}{cc}
5 & 6 \\
3+i & 1-i \\
2 i & 4+i
\end{array}\right]=A^{\theta}
\end{aligned}
$$

forte

1. If A^{θ} and B^{θ} be the transposed conjugates of A and B respectively

$$
*\left(A^{\theta}\right)^{\theta}=A
$$

* $(A \pm B)^{\theta}=A^{\theta} \pm B^{\theta}$
* $(K A)^{\theta}=\bar{K} A \theta$ where k is a complex
* $(A B)^{\theta}=B^{\theta} \cdot A^{\theta}$ number.

Hermitian Matrix
A square matrix A such that $(\bar{A})^{\top}=A$
is called a ttermitian fuatrix
Ex: $A=\left[\begin{array}{cc}4 & 1+3 i \\ 1-3 i & 7\end{array}\right] \Rightarrow \bar{A}=\left[\begin{array}{cc}4 & 1-3 i \\ 1+3 i & 7\end{array}\right]$

$$
(\bar{A})^{T}=\left[\begin{array}{cc}
4: & 1+3 i \\
1-3 i & 7
\end{array}\right]=A
$$

$\therefore A$ is a Hermitian matrix
skew Hermitian Matrix
A square matrix. A such that
$(\bar{A})^{T}=-A$ is called a skew hermitian dratrix
Ex:

$$
\begin{array}{r}
A=\left[\begin{array}{cc}
-3 i & 2 t i \\
-2+i & -i
\end{array}\right] \begin{array}{cc}
\bar{A}=\left[\begin{array}{cc}
3 i & 2-i \\
-2-i & i
\end{array}\right] \\
(\bar{A})^{\top} & =\left[\begin{array}{cc}
3 i & -2 i \\
2-i & i
\end{array}\right]=-A
\end{array}
\end{array}
$$

$\therefore A$ is a skew-Hermptian fratrix

1. It should be noted that elements are the leading

Note: diagonals must be all zero or all are purely imaginary
unitary Matrix
A square matrix A such that $(\bar{A})^{\top}=A^{-1}$
$\therefore A^{\theta} \cdot A=A^{\theta} A^{\theta}=I$ is called a unitary matrix

Date 1. If A and B are Hermitian matrices prove 2s/nlie that $A B-B A$ is a Skew Hermitian f Matrices that $A B-B A$ is a skew Hermitian fhatrices
Solus Given that A, B are Hermitian matrices

$$
\begin{aligned}
& (\bar{A})^{\top}=A,(\bar{B})^{\top}=B \\
& (\overline{A B-B A})^{\top}=(\overline{A B}-\overline{B A})^{T} \\
& =(\overline{A B}) T-(\overline{B A}) T \\
& -(\bar{A} \bar{B}) T-(\bar{B} \bar{A})^{\top} \\
& =(\bar{B})^{\top}(\bar{A})^{\top}-(\bar{A})^{\top}(\bar{B})^{\top} \\
& =B A-A B \\
& (A B-B A)^{T}=-(A B-B A)
\end{aligned}
$$

$\therefore A B-B A$ is a skew-Hermitian fuatrix
2. If A is a Hermitian matrix prove that IA is a skew Hermitian matrix
solus Since A is a Hermitian matrix

$$
\begin{aligned}
(\bar{A})^{\top} & =A \Rightarrow A \theta=A \\
(i A)^{\theta} & =-A \theta \\
& =-i A \\
(i A)^{\theta} & =-(i A)
\end{aligned}
$$

\therefore iA is a skew-Hermitian matrix
3. If A is a skew Hermitian prove that iA is a Hermitian matrix
solus Since A is a skew Hermitian matrix.

$$
\begin{aligned}
A \theta & =-A \\
(i A)^{\theta} & =i A \theta \\
(i A)^{\theta} & =-i A \\
& =A
\end{aligned}
$$

\therefore in pis Henmition matrix
4 show that every square matron is uniquely expicssible of the sum of a Hermitian matrix and o skew Hermitian matrix
sole service A is o square matrix

$$
\begin{aligned}
& \left(A+A^{O}\right)^{0}=A^{0}+1(A O)^{0}=A^{0}+A \\
& \left(A+A^{O}\right)^{0}=A+A^{0}
\end{aligned}
$$

$\therefore A+A B$ is a Hermitian matrix
$\frac{1}{2}(A H A O)=P$ is also a Hermitian matrix
now

$$
\begin{aligned}
(A+A D)=P & =A^{O-(A O)^{O}} \\
& =A D-A \\
& =-(A-A O)
\end{aligned}
$$

$\therefore(A-n 0)$ is 0 gkew-hermitian matrix
$\therefore \frac{1}{2}\left(A-A^{O}\right)=Q$ is also a skew thenmatian matrix

$$
\begin{aligned}
P+Q & =\frac{1}{2}(A+A D) \mp \frac{1}{2}(A-A O) \\
& =A
\end{aligned}
$$

\therefore A square matrix A is uniquely expressible.
a sum of Honmition and skewriHermitian matrix
5. If $A=\left[\begin{array}{ccc}3 & 7-4 i & -2+5 i \\ 7+4 i & -2 & 3+i \\ -2-5 i & 3-i & 4\end{array}\right]$ then show that
A is a Henmition matrix and. iA is a skew
solus

$$
\begin{aligned}
& {\left[A=\left[\begin{array}{ccc}
3 & 7-4 i & -2+5 i \\
7+4 i & -2 & 3+i \\
2-5 i & 3-i & 4
\end{array}\right]\right.} \\
& A=\left[\begin{array}{ccc}
3 & 7+4 i & -2-50 \\
7-4 i & -2 & 3-i \\
2+5 i & 3+i & 4
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
&(A+A \theta)^{\theta}=A \theta+(A \theta) \theta \\
&=A \theta+A \\
&=A+A \theta \\
& \therefore A+A^{\theta}=\left[\begin{array}{ccc}
3 & 7-4 i & -2+5 i \\
744 i & -2 & 3+i \\
2-5 i & 3-i & 4
\end{array}\right]+\left[\begin{array}{ccc}
3 & 7+4 i & -2-5 i \\
7-4 i & -2 & 3-i \\
2+5 i & 3+i & 4
\end{array}\right] \\
& A+A \theta=\left[\begin{array}{ccc}
3 & 7-4 i & -2+5 i \\
7+4 i & -2 & 3+i \\
2-5 i & 3-i & 4
\end{array}\right]+\left[\begin{array}{ccc}
3 & 7-4 i & 2+5 i \\
7+4 i & -2 & 3+i \\
-2-5 i & 3-i & 4
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
3 & 7-4 i & -2+3 i \\
7+4 i & -2 & 37 i \\
2-5 i & 3-i & 4
\end{array}\right] \\
& \bar{A}^{7}=\left[\begin{array}{ccc}
3 & 7+4 i & -2-3 i \\
7-4 i & -2 & 3-i \\
2+5 i & 3+i & 4
\end{array}\right] \Rightarrow A \theta=\left[\begin{array}{ccc}
3 & 7-4 i & 2+5 i \\
7+4 i & -2 & 3+i \\
-2-3 i & 3-i & 4
\end{array}\right]
\end{aligned}
$$

$$
(\bar{A})^{\top}=A
$$

509\%

$$
\begin{aligned}
A A & =A\left[\begin{array}{ccc}
3 & -4 i & -2+3 i \\
7+4 i & -2 & 3+i \\
2-5 i & 3-i & 4
\end{array}\right] \\
& =\left[\begin{array}{ccc}
3 i & 7 i+4 & -2 i-3 \\
7 i-4 & -2 i & 3 i-1 \\
2 i+5 & 3 i+1 & 4 i
\end{array}\right] \\
(\overline{i A}) & =\left[\begin{array}{ccc}
-3 i & -7 i+4 & +2 i-3 \\
-7 i-4 & 2 i & -3 i-1 \\
-2 i+5 & -3 i+1 & -4 i
\end{array}\right] \\
(\overline{i A}) T & =\left[\begin{array}{ccc}
-3 i & -7 i-4 & -2 i+5 \\
-7 i+4 & 2 i & -3 i+1 \\
2 i-3 & -3 i-1 & -4 i
\end{array}\right]=-i
\end{aligned}
$$

solu) Given $\bar{A}=\left[\begin{array}{ccc}3 & 7+4 i & -3-5 i \\ 7-4 i & -2 & -37 i \\ -2+5 i & 3+i & 4\end{array}\right]$

$$
(\bar{A})^{\top}=\left[\begin{array}{ccc}
3 & 7-4 i & -4+5 i \\
7+4 i & -2 & 3+i \\
-2-5 i & 3-i & 4 i
\end{array}\right]=A
$$

$\therefore A$ is a Hermition matrir

$$
\begin{aligned}
& \text { iA }=\left[\begin{array}{ccc}
3 i & 7 i+4 & -9 i-5 \\
7 i-4 & -3 i & 3 i-i \\
-2 i+5 & +3 i+1 & 4 i
\end{array}\right] \\
& \overline{i A}=\left[\begin{array}{ccc}
-3 i & -7 i+4 & 2 i-5 \\
-7 i-4 & 2 i & -3 i-1 \\
42 i+5 & -3 i+1 & -4 i
\end{array}\right] \\
& 7(i+)^{T}=\left[\begin{array}{ccc}
-3 i & -7 i-4 & 2 i+5 \\
-7 i 44 & 2 i & -3 i+1 \\
2 i-5 & -3 i-1 & -4 i
\end{array}\right] \\
& -\quad-\left[\begin{array}{ccc}
3 i & 744 i & 2+5 i \\
t-4 i & -2 & 3+4 i \\
+2+5 i & 3+i & 4
\end{array}\right]
\end{aligned}
$$

pote $(\overline{i A})^{3}=-i A$
20lull 6 . Express the matrix $\left[\begin{array}{ccc}1+i & 2 & 5-5 i \\ 2 i & 9+i & 4+2 i\end{array}\right]$ and the sum of Herriition motrix $\left[\begin{array}{ccc}2 i & -4 & 7\end{array}\right]$ skow Hermition motrix
solus Given matrix $A=\left[\begin{array}{ccc}1+i & 2 & 5-5 i \\ 2 i & 2+i & 4+2 i \\ -1+i & -4 & 7\end{array}\right]$

$$
\begin{aligned}
& \bar{A}=\left[\begin{array}{ccc}
1-i & 2 & 5+5 i \\
-2 i & 2-i & 4-2 i \\
-1-i & -4 & 7
\end{array}\right] \\
& (\bar{A})^{T}=A^{0}=\left[\begin{array}{ccc}
1-i & -2 i & -1-i \\
2 & 2-i & -4 \\
5+5 i & 4-2 i & 7
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
A+A \theta & =\left[\begin{array}{ccc}
1+i & 2 & 5 \\
2 i & 219 & 4-12 i \\
-1+i & -4 & 7
\end{array}\right]+\left[\begin{array}{ccc}
1-i & -29 & -1 \\
2 & 2-i & -4 \\
5+5 i & 4-2 i & 7
\end{array}\right] \\
& =\left[\begin{array}{ccc}
2 & 2-2 i & 4-6 i \\
29+2 & 4 & 29 \\
4 i 6 i & -2 i & 14
\end{array}\right] \\
P & =\frac{1}{2}(A+A 0)=\left[\begin{array}{ccc}
1 & 1-i & 2-3 i \\
i+1 & 2 & i \\
2+3 i & -i & 7
\end{array}\right]
\end{aligned}
$$

pis a Hermitian matrix

$$
\begin{aligned}
& \text { pis } A^{\theta}=\left[\begin{array}{ccc}
2 i & 2+2 i & 6-49 \\
29-2 & 2 i & 8+2 i \\
-6-4 i & -8+20 & 0
\end{array}\right] \\
& Q=\frac{1}{2}\left(A-A \theta^{-}\right)=\left[\begin{array}{ccc}
i & 1+i & 3-2 i \\
1-1 & 0 & 4+i \\
-3-2 i & -4+i & 0
\end{array}\right] \\
& \text { <kew Hermitian matrix }
\end{aligned}
$$

Q is a skew Hermitian matrix

$$
\begin{aligned}
& \text { is a skew } \\
& p+Q=\frac{1}{2}\left(A+A^{0}\right)+\frac{1}{2}(A-A \theta) \\
& \therefore=\left[\begin{array}{ccc}
1 & 1-i & 2-3 i \\
i+1 & 2 & i \\
2+3 i & -i & 7
\end{array}\right]+\left[\begin{array}{ccc}
i & 1+i & 3-2 i \\
i-1 & i & 4+i \\
-3-2 i & -u+i & 0
\end{array}\right]
\end{aligned}
$$

$=[1+i \quad 2,5-5 i \quad \therefore$ A square matrix
can be expressed in sum of Hermitian and skew Hermitian matrix
$=A$
7. Express the matrix $\begin{gathered}\text { sum of a Hermitian }\end{gathered}\left[\begin{array}{cc}i & 2-3 i \\ 6 t i & 0 \\ -i & 2-i\end{array}\right.$ $\left.\begin{array}{c}4+5 i \\ 4-5 i \\ 2+i\end{array}\right]$ on the Hermitian matrix
solus) Given $A=\left[\begin{array}{ccc}i & 2-3 i & 4+5 i \\ i+i & 0 & 4-5 i \\ -i & 2-i & 2+i\end{array}\right]$

$$
\begin{aligned}
& \bar{A}=\left[\begin{array}{ccc}
-i & 2+3 i & 4-5 i \\
6-i & 0 & 4+5 i \\
i & 2+i & 2-i
\end{array}\right] \\
& (\bar{A})^{\top}=A^{\theta}=\left[\begin{array}{ccc}
-i & 6-i & 9 \\
2+3 i & 0 & 2+i \\
4-5 i & 4+5 i & 2-i
\end{array}\right] \\
& \left(A+A^{\theta}\right)=\left[\begin{array}{ccc}
i & 2-3 i & 4+5 i \\
6+i & 0 & 4-5 i \\
-i & 2-i & 2+i
\end{array}\right]+\left[\begin{array}{ccc}
-i & 6-i & 0 \\
2+3 i & 0 & 2+i \\
4-5 i & 4+5 i & 2-i
\end{array}\right] \\
& =\left[\begin{array}{ccc}
0 & 8-4 i & 4+6 i \\
8+4 i & 0 & 6-4 i \\
4-6 i & 6+4 i & 4
\end{array}\right]
\end{aligned}
$$

P is a Hermitian matrix.

$$
\begin{aligned}
& p \text { is } a-A=\left[\begin{array}{ccc}
2 i & -4-2 i & 4+4 i \\
4-2 i & 0 & 2-6 i \\
-4+4 i & -2-6 i & 2 i
\end{array}\right] \\
& Q=\frac{1}{2}:(A-A \theta)=\left[\begin{array}{ccc}
i & -2-i & 2+2 i \\
2-i & 0 & 1-3 i \\
-2+2 i & -1-3 i & i
\end{array}\right]
\end{aligned}
$$

- Q is a skew hermitian matrix

$$
P+Q=\frac{1}{2}(A+A \theta)+\frac{1}{2}(A-A \theta)
$$

$$
\begin{aligned}
& =\left[\begin{array}{ccc}
0 & 4-2 i & 2+3 i \\
u+2 i & 0 & 3-2 i \\
2-3 i & 3+2 i & 2
\end{array}\right]+\left[\begin{array}{ccc}
i & -2-i & 2-1+i \\
2-i & 0 & 1-3 i \\
-2-12 i & -1-3 i & 0
\end{array}\right] \\
& =\left[\begin{array}{ccc}
i & 2-3 i & 4+5 i \\
6+i & 0 & 4-5 i \\
-i & 2-i & 2+i
\end{array}\right]
\end{aligned}
$$

A square matrix can be expressed in the sum

$$
=A
$$ of the Hermitian and skew Hermitian matrix

Date Echelon Form of a Matrix
A matrix is said to be in Ecticlon
form if it has the following properties

1. zero rows If any are below any non-zero row
2. The first non-zero entry in each non-zero row is equal to one.
3. The no.0f zeroes before the first non-zero elements in a row is less than the no. of such zeroes in the next row
S Vote: The condition 2 is optional
The no -of non-zero rows in the row echelon form Important Note of A is the rank of A.
$\varepsilon x:$

$$
A=\left[\begin{array}{llll}
1 & 0 & 1 & 2 \\
0 & 3 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad B=\left[\begin{array}{llll}
1 & 0 & 0 & 2 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], C=\left[\begin{array}{llll}
1 & 0 & 0 & 0
\end{array} 0\right.
$$

1. Reduce the fuatrix $A=\left[\begin{array}{llll}1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ \text { form and hence find its } \\ 3 & 2 & 1 & 3\end{array}\right]$ rato Echelon
solus]

$$
\begin{aligned}
& A=\left[\begin{array}{llll}
1 & 2 & 3 & 0 \\
2 & 4 & 3 & 2 \\
3 & 2 & 1 & 3 \\
6 & 8 & 7 & 5
\end{array}\right]\left[\begin{array}{llll}
3 & 2 & 1 & 3 \\
6 & 8 & 7 & 5
\end{array}\right] \\
& \sim\left[\begin{array}{cccc}
1 & 2 & 3 & 0 \\
0 & 0 & -3 & 2 \\
0 & -4 & -8 & 3 \\
0 & -4 & -11 & 5
\end{array}\right] \quad \begin{array}{l}
R_{2} \rightarrow R_{2}-2 R_{1} \\
R_{3} \rightarrow R_{3}-3 R_{1}, \\
R_{4} \rightarrow R_{4}-6 R_{1}
\end{array}, \\
& \sim\left[\begin{array}{cccc}
1 & 2 & 3 & 0 \\
0 & 0 & -3 & 2 \\
0 & -4 & -8 & 3 \\
0 & 0 & -3 & 2
\end{array}\right] R_{u} \rightarrow R_{u}-R_{3} \\
& \sim\left[\begin{array}{cccc}
1 & 2 & 3 & 0 \\
0 & 0 & -3 & 2 \\
0 & -u & -8 & 3 \\
0 & 0 & 0 & 0
\end{array}\right] R_{u} \longrightarrow R_{u}-R_{2} \\
& \sim\left[\begin{array}{cccc}
1 & 2 & 3 & 0 \\
0 & -4 & -8 & 3 \\
0 & 0 & -3 & 2 \\
0 & 0 & 0 & 0
\end{array}\right], R_{2} \leftrightarrow R_{3} \\
& \therefore e(A)=3
\end{aligned}
$$

 its rank
solus

$$
\begin{aligned}
A & =\left[\begin{array}{cccc}
-1 & -3 & 3 & -1 \\
1 & 1 & -1 & 0 \\
2 & -5 & 2 & -3 \\
-1 & 1 & 10 & R_{2} \rightarrow R_{2}+R_{1}
\end{array}\right. \\
& =\left[\begin{array}{cccc}
-1 & -3 & 3 & -1 \\
0 & -2 & 2 & -1 \\
0 & -11 & 8 & -5 \\
0 & 4 & -3 & 2
\end{array}, \begin{array}{ll}
& R_{2} \rightarrow R_{2}+R_{1} \\
R_{3} \rightarrow R_{3}+2 R_{1} \\
R_{u} \rightarrow R_{u}-R_{1}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \sim\left[\begin{array}{cccc}
-1 & -3 & 3 & -1 \\
0 & -2 & 2 & -1 \\
0 & 0 & -6 & 1 \\
0 & 0 & 1 & 0
\end{array}\right] \\
& R_{3} \rightarrow 2 R_{3}-11 R_{2} \\
& R_{u} \rightarrow R_{u}+2 R_{2} \\
& \sim\left[\begin{array}{cccc}
-1 & -3 & 3 & -1 \\
0 & -2 & 0 & -1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right] \\
& R_{2} \rightarrow R_{2}-2 R_{4} \\
& R_{3} \rightarrow R_{3}+6 R_{4} \\
& R_{1} \rightarrow R_{1}+R_{3} \\
& R_{2} \rightarrow R_{2}+R_{3} \\
& \text { HaW } \\
& \left.\begin{array}{l}
5=\left[\begin{array}{cccc}
0 & 1 & 1 & \\
8 & 1 & 3 & 6 \\
0 & 3 & 2 & 2 \\
-8 & -1 & -3 & 4
\end{array}\right] \quad 6 \\
\text { Solus } \\
3
\end{array}\right]\left[\begin{array}{cccc}
-2 & -1 & -3 & -1 \\
1 & 2 & 3 & -1 \\
1 & 0 & 1 & 1 \\
1 & 1 \\
0 & 1 & 1 & -1
\end{array}\right] R \text { 1 } \\
& {\left[\begin{array}{cccc}
2: & 1 & 3 & 5 \\
4 & 2 & 1 & 3 \\
8 & 4 & 7 & 13 \\
8 & 4 & -3 & -1
\end{array}\right]} \\
& \sim\left[\begin{array}{cccc}
-1 & -3 & 3 & 0 \\
0 & -2 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right] \\
& 3\left[\begin{array}{cccc}
-2 & -1 & -3 & -1 \\
1 & 2 & 3 & -1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & -1
\end{array}\right] \\
& \sim\left[\begin{array}{cccc}
-2 & -1 & -3 & -1 \\
1 & 2 & 3 & -1 \\
1 & -9 & 0 & 2 \\
0 & 1 & 1 & -1
\end{array}\right] \\
& R_{1} \rightarrow R_{15}=R_{1} \\
& R_{3} \rightarrow R_{3}-R_{4} \\
& \sim\left[\begin{array}{cccc}
-2 & -1 & -3 & -1 \\
1 & 2 & 3 & 1 \\
r & -1 & 0 & 2 \\
-2 & 0 & -2 & 0
\end{array}\right]\left[R_{u} \rightarrow R_{u}+R_{1}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \sim\left[\begin{array}{cccc}
-2 & -1 & -3 & -1 \\
0 & 2 & 2 & -2 \\
0 & -2 & 2 & 2 \\
0 & 1 & 1 & -1
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow R_{2}-R_{3} \\
R_{3} \rightarrow R_{3}-R_{2}
\end{array} \\
& \sim\left[\begin{array}{cccc}
-2 & -1 & -3 & -1 \\
0 & 0 & 4 & 0 \\
0 & 0 & 4 & 0 \\
0 & 1 & 1 & -1
\end{array}\right] \begin{array}{ll}
R_{2} \rightarrow & R_{2}+R_{3} \\
R_{3} \rightarrow & R_{3}+R_{2}
\end{array} \\
& \sim\left[\begin{array}{cccc}
-2 & -1 & -3 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 1 & 1 & -1
\end{array}\right] \\
& R_{2} \rightarrow R_{2}-R_{3} \\
& R_{3} \rightarrow R_{3}-R_{2} \\
& C(A)=2 \\
& \sim\left[\begin{array}{cccc}
2 & 1 & 3 & 5 \\
0 & 0 & -10 & -14 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] R_{2} \leftrightarrow R_{4} \\
& A=\left[\begin{array}{cccc}
2 & 1 & 3 & 5 \\
0 & 0 & -5 & -7 \\
0 & 0 & -5 & -7 \\
0 & 0 & -10 & -14
\end{array}\right] \\
& \begin{array}{l}
R_{2} \rightarrow R_{2}-2 R_{1} \\
R_{3} \rightarrow R_{3}-4 R_{1} \\
R_{4} \rightarrow R_{4}-R_{3}
\end{array} \\
& A=\left[\begin{array}{cccc}
2 & 1 & 3 & 5 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -10 & -14
\end{array}\right] \quad \begin{array}{lll}
R_{2} \rightarrow R_{2}-R_{3}^{\prime} \\
R_{3}-5 R_{3}-R_{4}
\end{array} \\
& \rho(A)=2
\end{aligned}
$$

5. $\left[\begin{array}{cccc}8 & 1 & 3 & 6 \\ 0 & 3 & 2 & 2 \\ -8 & -1 & -3 & 4\end{array}\right]$

$$
\left[\begin{array}{cccc}
8 & 1 & 3 & 6 \\
-24 & 0 & -7 & -16 \\
0 & 0 & 10 & 10
\end{array}\right] \begin{array}{ll}
R_{2} \rightarrow 3 R_{2}-3 R, & C(A)=3 \\
R_{3} \rightarrow & R_{3}+R_{1}
\end{array}
$$

6.

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
5 & 3 & 14 & 4 \\
0 & 1 & 2 & 1 \\
1 & -1 & 2 & 0
\end{array}\right]} \\
& \sim\left[\begin{array}{cccc}
5 & 3 & 14 & 4 \\
-5 & 0 & -8 & -1 \\
8 & 0 & 20 & 4
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow 3 R_{2}-R_{1} \\
R_{3} \rightarrow 3 R_{3}+R_{1} \\
\sim
\end{array} \\
& \left.\sim \begin{array}{cccc}
5 & 3 & 14 & 4 \\
-5 & 0 & -8 & -1 \\
2 & 0 & 5 & 1
\end{array}\right] R_{3} \rightarrow \frac{R_{3}}{4}
\end{aligned}
$$

(1)

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
-2 & -1 & -3 & -1 \\
0 & 3 & 3 & -3 \\
0 & -1 & -1 & 1 \\
0 & 1 & 1 & -1
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow 2 R_{2}+R_{1} \\
R_{3} \rightarrow 2 R_{3}+R_{1}
\end{array}} \\
& \sim\left[\begin{array}{cccc}
-2 & -1 & -3 & -1 \\
0 & 3 & 3 & -3 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \begin{array}{l}
\text { R } \\
R_{3} \rightarrow 3 R_{3}+R_{2} \\
R_{4} \rightarrow 3 R_{4}+R_{2}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore C(A)=2 \\
& 7 .\left[\begin{array}{cccc}
1 & -2 & 0 & 1 \\
2 & -1 & 1 & 0 \\
3 & -3 & 1 & 1 \\
-1 & -1 & -1 & 1
\end{array}\right] . \\
& \sim\left[\begin{array}{cccc}
1 & -2 & 0 & 1 \\
0 & +3 & 1 & -2 \\
0 & 3 & 1 & -2 \\
0 & -3 & -1 & 2
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow R_{2}-2 R_{1} \\
R_{3} \rightarrow R_{3}-3 R_{1} \\
R_{u} \rightarrow R_{u}+R_{1}
\end{array} \\
& \sim\left[\begin{array}{cccc}
1 & -2 & 0 & 1 \\
0 & -0 & 0 & -8 \\
0 & 3 & 1 & -2
\end{array}\right] \quad R_{2} \rightarrow R_{2}+2 R_{3} \\
& \sim\left[\begin{array}{cccc}
1 & -2 & 0 & 1 \\
0 & 0 & 2 & -3 \\
0 & 0 & 0 & 0 \\
0 & -3 & -1 & 2
\end{array}\right] \quad R_{3} \rightarrow R_{3}+R_{13}
\end{aligned}
$$

$$
\sim\left[\begin{array}{ccccc}
1 & -2 & 0 & 1 \\
0 & -3 & - & 2 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] . \quad R_{2} \leftrightarrow R_{4}: C(A)=2
$$

Date Reduction to formal form
"112 2018 Every man -matrix of rank " γ " can be reduced to the form is ip (or) [Ir 0 change of elementary row [... this form is called normal form or first Cananical form of a matrix

1. Reduce the matrix $A=\left[\begin{array}{cccc}1 & 2 & 1 & 0 \\ -2 & 4 & 3 & 0 \\ 1 & 0 & 2 & -8\end{array}\right]$
solus] Given matrix

$$
\begin{aligned}
A & =\left[\begin{array}{cccc}
1 & 2 & 1 & 0 \\
-2 & 4 & 3 & 0 \\
1 & 0 & 2 & -8
\end{array}\right] \\
& =\left[\begin{array}{cccc}
1 & 2 & 1 & 0 \\
0 & 8 & 5 & 0 \\
0 & -2 & 1 & -8
\end{array}\right], \begin{array}{lll}
R_{2} \rightarrow R_{2}+2 R_{1} \\
R_{3} \rightarrow R_{3}-R_{1}
\end{array} \\
& =\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 8 & 5 & 0 \\
0 & -2 & 1 & 1
\end{array}\right] \begin{array}{l}
c_{2} \rightarrow c_{2}-2 c_{1} \\
c_{3} \rightarrow c_{3}-c_{1} \\
\mathrm{Cu}_{4}
\end{array} \\
& \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 8 & 5 & 0 \\
0 & 0 & 9
\end{array}\right] \begin{array}{l}
R_{3} \rightarrow u R_{3}+R_{2}
\end{array} \\
& \left.\sim\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 5 & 0 \\
0 & 0 & 9 & 1
\end{array}\right], \begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
c_{2} / 8 \\
0 & 0 & 9
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \sim\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & q
\end{array}\right] \quad c_{3} / 9 \\
& \sim\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \quad c_{u} \rightarrow c_{u}-c_{3} \\
& \sim\left[\begin{array}{lll}
I_{3} & 0 \\
0 & 0
\end{array}\right] \quad \therefore l(A)=3
\end{aligned}
$$

2. $A=\left[\begin{array}{llll}2 & 1 & 3 & 4 \\ 0 & 3 & 4 & 1 \\ 2 & 3 & 7 & 5\end{array}\right]$ by cananical form

$$
\begin{aligned}
& \sim\left[\begin{array}{llll}
2 & 5 & 4 & 6 \\
0 & 3 & 4 & 1 \\
0 & 2 & 4 & 1 \\
0 & 4 & 8 & 2
\end{array}\right] \begin{array}{l}
\\
R_{3} \rightarrow R_{3}-R_{1} \\
R_{u} \rightarrow R u-R_{1}
\end{array} \\
& \sim\left[\begin{array}{llll}
2 & 1 & 3 & 4 \\
0 & 3 & 4 & 1 \\
0 & 2 & 4 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] R_{u} \rightarrow R_{u}-2 R_{3} \\
& \sim\left[\begin{array}{llll}
2 & 1 & 3 & 4 \\
0 & 3 & 4 & 1 \\
0 & 0 & 4 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] R_{3} \rightarrow 3 R_{3}-2 R_{2} \\
& \sim\left[\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 6 & 8 & 1 \\
0 & 0 & 8 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \begin{array}{l}
c_{2} \rightarrow 2 c_{2}-c_{1} \\
c_{3} \rightarrow 2 c_{3}-3 c_{1} \\
c_{4} \rightarrow c_{4}-2 c_{1}
\end{array} \\
& \sim\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \begin{array}{l}
c_{1} / 2 \\
c_{2} / 6 \\
c_{3} / 8
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad c_{4} \rightarrow c_{4}-c_{3} \\
& \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] c_{3} \rightarrow c_{3}-L_{2} \\
& \sim\left[\begin{array}{cc}
I_{3} & 0 \\
0 & 0
\end{array}\right] \therefore C(A)=3
\end{aligned}
$$

Hew
3. $\left[\begin{array}{cccc}2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7\end{array}\right]$
solus Given matrix

$$
\begin{aligned}
& A=\left[\begin{array}{cccc}
2 & 3 & -1 & -1 \\
1 & -1 & -2 & -4 \\
3 & 1 & 3 & -2 \\
6 & 3 & 0 & -7
\end{array}\right] \\
& =\left[\begin{array}{cccc}
2 & 3 & -1 & -1 \\
0 & -5 & -3 & -7 \\
0 & -7 & 9 & -1 \\
0 & -6 & 3 & -4
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow 2 R_{2}-R_{1} \\
R_{3} \rightarrow 2 R_{3}-3 R_{1} \\
R_{u} \rightarrow R_{u}-3 R_{1}
\end{array} \\
& \sim\left[\begin{array}{cccc}
2 & 0 & 0 & 0 \\
0 & -10 & -3 & -7 \\
0 & -14 & 9 & -1 \\
0 & -12 & 3 & -4
\end{array}\right] \quad \begin{array}{l}
c_{2} \rightarrow 2 c_{2}-3 c_{1} \\
c_{3} \rightarrow 2 c_{3}+c_{1} \\
c_{u} \rightarrow 2 c_{u}+c_{1}
\end{array} \\
& \sim\left[\begin{array}{ccc:c}
1 & 0 & 0 & 0 \\
0 & -5 & -1 & -7 \\
0 & -7 & 3 & -1 \\
0 & -6 & 1 & -4
\end{array}\right] \begin{array}{l}
c_{1} / 2 \\
c_{2} / 2 \\
c_{3} / 3
\end{array} \\
& \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & -1 & -7 \\
0 & -22 & 3 & -1 \\
0 & -11 & 1 & 4
\end{array}\right] \\
& c_{2} \rightarrow c_{2}-5 c_{3}
\end{aligned}
$$

$$
\begin{aligned}
& \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & -1 & -7 \\
0 & -22 & 0 & -22 \\
0 & -11 & 1 & 4
\end{array}\right] \begin{array}{ll}
P_{3} \rightarrow P_{3} \rightarrow & P_{3}+3 P_{2} \\
P_{1}-1
\end{array} \\
& \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & -1 & -7 \\
0 & -22 & 0 & -22 \\
0 & 0 & 2 & 18
\end{array}\right] R_{u} \rightarrow 2 P_{4}-P_{3} \\
& \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & -1 & -7 \\
0 & -2 & 0 & 22 \\
0 & 0 & 2 & 18
\end{array}\right] \quad C_{2} / 11, \text { Ess } \\
& \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -7 \\
0 & 1 & -22 & 22 \\
0 & 0 & -4 & 18
\end{array}\right] \quad \begin{array}{l}
c_{2} l_{2} \\
c_{3} \rightarrow 7 c_{3}+c_{4}
\end{array} \\
& \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & -7 & 0 \\
0 & 1 & 22 & -22 \\
0 & 0 & 18 & -4
\end{array}\right] \\
& C_{3} \leftrightarrow C_{4} \\
& \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & -7 & 0 \\
0 & 1 & 0 & -22 \\
0 & 0 & 8 & -4
\end{array}\right] \\
& c_{3} \rightarrow c_{3}+c_{4} \\
& \sim\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & t \\
0 & 0 & -7 & 0 & \\
0 & 1 & 0 & +11 & 2
\end{array}\right] \\
& \mathrm{Cu}_{u} \rightarrow \mathrm{Cu}_{4} \mathrm{Z}_{2} \\
& \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 11 \\
0 & 0 & -7 & 0 \\
0 & 0 & 8 & 2
\end{array}\right] \quad R_{2} \leftrightarrow R_{3} \\
& \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 11 \\
0 & 0 & 1 & 0 \\
0 & 0 & 4 & 1
\end{array} \begin{array}{c}
\frac{R_{3}}{-7} \\
\frac{R u}{2}
\end{array}\right. \\
& \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 11 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad R_{u} \rightarrow R_{u}-41_{3}
\end{aligned}
$$

$$
\begin{aligned}
& \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & r & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad C_{u} \rightarrow c_{4}-\| c_{2}
\end{aligned}
$$

$$
\begin{aligned}
& 4-\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3 \\
3 & 0 & 5 & -10
\end{array}\right] \quad 5 \cdot\left[\begin{array}{llll}
1 & 2 & 3 & 0 \\
2 & 4 & 3 & 2 \\
3 & 2 & 1 & 13 \\
6 & 8 & 7 & 3
\end{array}\right] \quad 6 \cdot\left[\begin{array}{cccc}
2 & 3 & -1 & -1 \\
1 & -1 & -2 & -3 \\
3 & 1 & 3 & -2 \\
6 & 3 & 0 & -7
\end{array}\right. \\
& 7-\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 2 & 3 & -4 \\
2 & 3 & 5 & -5 \\
3 & -4 & -5 & 8
\end{array}\right] \cdot 8 \cdot\left[\begin{array}{ccccc}
1 & 4 & 3 & -2 & 1 \\
-2 & -3 & -1 & 4 & 3 \\
-1 & 6 & 7 & 2 & 9 \\
-3 & 3 & 6 & 6 & 12
\end{array}\right] \cdot\left[\begin{array}{cccc}
0 & 1 & -3 & -1 \\
1 & 0 & 1 & 1 \\
3 & 1 & 0 & 2 \\
1 & 1 & -2 & 0 .
\end{array}\right. \\
& 10 \cdot\left[\begin{array}{cccc}
1 & 2 & -1 & 3 \\
4 & 1 & 2 & 1 \\
3 & -1 & 1 & 2 \\
1 & 2 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
2 & 3 & 7 \\
3 & -2 & 4 \\
1 & -3 & -1
\end{array}\right] \text {. } \\
& \frac{\text { solul }}{11 .} \quad A=\left[\begin{array}{ccc}
2 & 3 & 7 \\
3 & -2 & 4 \\
1 & -3 & -1
\end{array}\right] \\
& A \sim\left[\begin{array}{ccc}
2 & 3 & 7 \\
0 & -13 & -13 \\
0 & -9 & -9
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow 2 R_{2}-3 R_{1} \\
R_{3} \rightarrow 2 R_{3}-R_{1}
\end{array} \\
& \sim\left[\begin{array}{ccc}
2 & 3 & 7 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right] \quad \begin{array}{l}
R_{2} \rightarrow \frac{R_{2}}{-13} \\
R_{3} \rightarrow \frac{R_{3}}{-9}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \sim\left[\begin{array}{lll}
2 & 3 & 7 \\
0 & 0 & 0 \\
0 & 1 & 1
\end{array}\right] \quad R_{2} \rightarrow R_{2}-3 R_{3} \\
& \sim\left[\begin{array}{lll}
2 & 3 & 4 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] C_{3} \rightarrow C_{3}-C_{2} \\
& \sim\left[\begin{array}{ccc}
2 & 0 & 4 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] R_{1} \rightarrow R_{1}-3 R_{3} \\
& \sim:\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] R_{1} \rightarrow_{i} R_{1} / 2 . \\
& \sim\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \quad c_{2} \leftrightarrow c_{3} \\
& \therefore \sim \sim\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \quad c_{2} \rightarrow c_{2}-2 c_{1} \\
& 4 A=\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3 \\
3 & 0 & 5 & -10
\end{array}\right] \\
& 4 A=\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
2 & -1 & 4 & 3 \\
3 & 0 & 5 & -10
\end{array}\right] . \\
& \sim\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & -3 & -2 & -5 \\
0 & -6 & -4 & -22
\end{array}\right] \xrightarrow[R_{2}]{ } \rightarrow R_{2}-2 R_{1} \\
& R_{3} \rightarrow R_{3}-3 R_{1} \\
& \begin{array}{l}
{\left[\begin{array}{cccc}
0 & -6 & -4 & -22 \\
\sim & \left.\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & 0 & 5 & 2 \\
0 & -6 & -4 & -22
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow 2 R_{2}+3 R_{1} \\
R_{3}
\end{array}\right] R_{3}+3 P
\end{array}\right]}
\end{array} \\
& \sim\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & 0 & 5 & 2 \\
0 & 3 & 2 & 11
\end{array}\right] \quad R_{3} \rightarrow \frac{R_{3}}{-2} \\
& \sim\left[\begin{array}{cccc}
1 & 2 & 0 & 0 \\
0 & 0 & 10 & 2 \\
0 & 3 & -5 & 5
\end{array}\right] \begin{array}{l}
c_{3} \rightarrow \begin{array}{l}
2 c_{3}-3 c_{2} \\
c_{4} \rightarrow
\end{array} c_{4}-2 c_{2}
\end{array} \\
& \sim\left[\begin{array}{cccc}
1 & 2 & 0 & 0 \\
0 & 0 & 2 & 2 \\
0 & 3 & -1 & 5
\end{array}\right] \quad c_{2} \rightarrow \frac{c_{2}}{5},
\end{aligned}
$$

$$
\begin{aligned}
& \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 \\
0 & 3 & -6 & 5
\end{array}\right] \quad \begin{array}{l}
c_{2} \rightarrow c_{2}-2 c_{1} \\
c_{3} \rightarrow c_{3}-c_{4}
\end{array} \\
& \sim\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 \\
0 & 1 & 1 & 5
\end{array}\right] \quad \frac{c_{2}}{3}, \frac{c_{3}}{-2} \\
& \sim\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 \\
0 & 0 & 1 & 0
\end{array}\right] \begin{array}{l}
c_{2} \rightarrow c_{2}-c_{3} \\
c_{1} \rightarrow c_{4}-5 c_{3}
\end{array} \\
& \sim\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \\
& c_{2} \leftrightarrow c_{4} \\
& \sim\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \quad \frac{C_{2}}{2} \sim\left[\begin{array}{cc}
I_{3} & 0 \\
0 & 0
\end{array}\right] \\
& C(A)=3 \\
& 5 A=\left[\begin{array}{llll}
1 & 2 & 3 & 0 \\
2 & 4 & 3 & 2 \\
3 & 2 & 1 & 3 \\
6 & 8 & 7 & 3
\end{array}\right] \\
& \sim\left[\begin{array}{cccc}
1 & 2 & 3 & 0 \\
0 & 0 & -3 & 2 \\
0 & -4 & -8 & 2 \\
0 & -4 & -11 & 3
\end{array}\right]: \begin{array}{l}
R_{2} \rightarrow R_{2}-2 R_{1} \\
R_{3} \rightarrow \\
R_{4} \rightarrow
\end{array} R_{3}-3 R_{1}, R_{4}-6 R_{1} \\
& \sim\left[\begin{array}{cccc}
2 & 0 & -2 & 2 \\
0 & 0 & -3 & 2 \\
0 & -4 & -8 & 2 \\
0 & 0 & -3 & 1
\end{array}\right] \begin{array}{l}
R_{1} \rightarrow 2 R_{1}+R_{3} \\
R_{u} \rightarrow R_{4}-R_{3}
\end{array} \\
& \sim\left[\begin{array}{cccc}
2 & 0 & -1 & 1 \\
0 & 0 & -3 & 2 \\
0 & -2 & -4 & 1 \\
0 & 0 & -3 & 1
\end{array}\right] \\
& R_{1} \rightarrow \frac{R_{1}}{2} \\
& R_{2} \rightarrow \frac{R_{3}}{2} \\
& \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 0 & -1 & 2 \\
0 & 1 & -3 & 1 \\
0 & 0 & -2 & 1
\end{array}\right] \\
& \begin{array}{l}
c_{2} \rightarrow \frac{c_{2}}{-2} \\
c_{3} \rightarrow c_{3}+c_{4}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 3 \\
0 & 2 & 0 & -1 \\
0 & 0 & 0 & -3
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow 2 R_{2}-R_{4} \\
R_{3} \rightarrow 2 R_{3}-3 R_{4} \\
R_{u} \rightarrow R_{4}-2 R_{2}
\end{array} \\
& \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 3 \\
0 & 1 & 0 & -1 \\
0 & 0 & 0 & -3
\end{array}\right] \\
& B_{L_{p}} \rightarrow \text { \& } D_{11} \cdot C_{2} \rightarrow \frac{c_{2}}{2} \\
& \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 3 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & -3
\end{array}\right], \quad c u \rightarrow c_{1}+c_{2} \\
& \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1
\end{array}\right] \\
& \mathrm{Cu} \rightarrow \frac{\mathrm{cu}}{3} \\
& \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & -1 & 0 & 0
\end{array}\right] \\
& \mathrm{C}_{2} \leftrightarrow \mathrm{Cu} \\
& \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0
\end{array}\right] \\
& C_{3} \longleftrightarrow C_{4} \\
& \sim\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& \sim\left[\begin{array}{cc}
I_{3} & 0 \\
0 & 0
\end{array}\right] \quad e(A)=3 \\
& \text { 6. }\left[\begin{array}{rrrr}
2 & 3 & -1 & -1 \\
1 & -1 & -2 & -3 \\
3 & 1 & 3 & -2 \\
6 & 3 & 0 & -7
\end{array}\right] \\
& \sim\left[\begin{array}{cccc}
2 & 3 & -1 & -1 \\
0 & -5 & -3 & -5 \\
0 & -7 & 9 & -1 \\
0 & -6 & 3 & -4
\end{array}\right] \begin{array}{l}
\\
R_{2} \rightarrow 2 R_{2}-R_{1} \\
R_{3} \rightarrow 2 R_{3}-3 R_{1} \\
R_{u} \rightarrow
\end{array} \begin{array}{l}
R_{u}-3 R_{1}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \sim\left[\begin{array}{cccc}
2 & 0 & -1 & +1 \\
0 & -14 & -3 & +5 \\
0 & 20 & 9 & +1 \\
0 & 3 & 3 & +4
\end{array}\right] \begin{array}{c}
c_{2} \rightarrow c_{2}+3 c_{3} \\
c_{4} \rightarrow \frac{c_{4}}{-1}
\end{array} \\
& \sim\left[\begin{array}{cccc}
2 & 0 & -1 & 1 \\
0 & -14 & -3 & 5 \\
0 & 20 & 9 & 1 \\
0 & 3 & 38 & 4
\end{array}\right] \begin{array}{c}
\frac{c_{1}}{2} \\
R_{1}+t^{+14} B_{1}+1 z B q
\end{array} \\
& \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -14 & -3 & 5 \\
0 & 20 & 9 & 1 \\
0 & 3 & 3 & 4
\end{array}\right] \quad \begin{array}{c}
c_{3} \rightarrow-c_{3}+c_{1} \\
c_{u} \rightarrow c_{4}-c_{1}
\end{array} \\
& \begin{array}{l}
\sim\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -14 & -1 & 5 \\
0 & 20 & 3 & 1 \\
0 & 3 & 1 & 4
\end{array}\right] \quad c_{3} \rightarrow \frac{c_{3}}{3} \\
\sim\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & -1 & 5 \\
0 & -22 & 3 & 1 \\
0 & -11 & 1 & 4
\end{array}\right] \quad c_{2} \rightarrow c_{2}-14 c_{3}
\end{array} \\
& \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & -1 & 5 \\
0 & 2 & 3 & 1 \\
0 & 1 & 1 & 4
\end{array}\right] \quad c_{2} \rightarrow \frac{c_{2}}{-11} \\
& \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & -1 & 5 \\
0 & 0 & 1 & -7 \\
0 & 1 & 1 & 4
\end{array}\right] \quad R_{3} \rightarrow R_{3}-2 R_{4} \\
& \left.\sim\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -2 \\
0 & 0 & 1 & -7
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow \begin{array}{l}
R_{2}+R_{3} \\
0
\end{array} 1 \\
R_{u} \rightarrow
\end{array}\right] \begin{array}{l}
R_{u}-R_{3}
\end{array} \\
& \begin{array}{l}
\sim\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -2 & 0 & 0 \\
0 & -7 & 1 & 0 \\
0 & 11 & 0 & 1
\end{array}\right] \quad C_{2} \leftrightarrow c_{4} \\
\sim\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right] \quad R_{3} \rightarrow 2 R_{3}-7 R_{2}
\end{array} \\
& \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 11 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{ll}
R_{2} \rightarrow & \frac{R_{2}}{-2}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \sim\left[\begin{array}{cccc}
q & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad R_{4} \rightarrow R_{u}-11 P_{2} \\
& \sim\left[\begin{array}{cc}
I u & 0 \\
0 & 0
\end{array}\right] \\
& e(A)=4 \\
& 7 . \\
& A=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 2 & 3 & -4 \\
2 & 3 & 5 & -5 \\
3 & -4 & -5 & 8
\end{array}\right] \\
& A \sim\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & -5 \\
0 & 1 & 3 & -7 \\
0 & -7 & -8 & 5
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow \begin{array}{l}
R_{2}-R_{1} \\
R_{3} \rightarrow \\
R_{3}-2 R_{1} \\
R_{4} \rightarrow
\end{array} R_{4}-3 R_{1}
\end{array} \\
& \sim\left[\begin{array}{cccc}
1 & 0 & -1 & 6 \\
0 & 1 & 2 & -5 \\
0 & 0 & 1 & -2 \\
0 & 0 & 6 & -30
\end{array}\right] \begin{array}{l}
R_{1} \rightarrow R_{1}-R_{2} \\
R_{3} \rightarrow R_{3}-R_{2} \\
R_{4} \rightarrow R_{4}+7 R_{2}
\end{array} \\
& \sim\left[\begin{array}{cccc}
1 & 0 & -1 & 6 \\
0 & 1 & 2 & -5 \\
0 & 0 & 1 & -2 \\
0 & 0 & 1 & -5
\end{array}\right] \quad R u \rightarrow \frac{R u}{6} \\
& \sim\left[\begin{array}{cccc}
1 & 0 & 11 & 6 \\
0 & 1 & 0 & -9 \\
0 & 0 & 1 & -2 \\
0 & 0 & 0 & -3
\end{array}\right] \quad \begin{array}{l}
R_{2} \rightarrow R_{2}-2 R_{3} \\
R_{u} \rightarrow R_{u}-R_{3}
\end{array} \\
& \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & -9 \\
0 & 0 & 1 & -2 \\
0 & 0 & 0 & -3
\end{array}\right] \quad \begin{array}{l}
c_{3} \rightarrow c_{3}+c_{1} \\
c_{u} \rightarrow c_{4}-6 c_{1}
\end{array} \\
& c u \rightarrow c_{u}-b c_{i} \\
& \mathrm{Cu}_{u} \rightarrow \mathrm{Cu}_{4}+\mathrm{Cq}_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 9 & 0 \\
0 & 0 & 0 & -3
\end{array}\right] \quad\left[u \rightarrow c_{u}+2 c_{3}\right. \\
& \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad R_{u} \rightarrow \frac{P_{u}}{-3} \\
& \therefore C(n)=4
\end{aligned}
$$

$$
8 \cap=\left[\begin{array}{ccccc}
\therefore & C(n)=4 & & 1 \\
1 & 4 & 3 & -2 & 1 \\
-2 & -3 & -1 & 4 & 3 \\
-1 & 6 & 7 & 2 & 9 \\
-3 & 3 & 6 & 6 & 12
\end{array}\right]
$$

$$
\begin{aligned}
& \sim\left[\begin{array}{ccccc}
1 & 4 & 3 & -2 & 1 \\
0 & 5 & 5 & 0 & 5 \\
0 & 10 & 10 & 0 & 10 \\
-1 & 1 & 2 & 2 & 4
\end{array}\right] \\
& \sim\left[\begin{array}{ccccc}
1 & 4 & 3 & -2 & 1 \\
0 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 \\
0 & 5 & 5 & 0 & 5
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
R_{2} & \rightarrow R_{2}+2 R_{1} \\
R_{3} & \rightarrow R_{3}+R_{1} \\
R_{4} & \rightarrow \frac{R_{4}}{3} \\
R_{2} & \rightarrow \frac{R_{2}}{5} \\
R_{3} & \rightarrow \frac{R_{3}}{10} \\
R_{u} & \rightarrow R_{4}+R_{1} \\
R_{1} & \rightarrow R_{1}-4 R_{2} \\
R_{3} & \rightarrow R_{3}-R_{2} \\
R_{u} & \rightarrow R_{4}-5 R_{2}
\end{aligned}
$$

$$
\sim\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$$
\begin{gathered}
c_{3} \rightarrow c_{3}+c_{1} \\
c_{4} \rightarrow \cdot c_{4}-2 c_{1} \\
c_{5} \rightarrow c_{5}+3 c_{1} \\
c_{3} \rightarrow c_{3}-c_{2} \\
c_{4} \rightarrow c_{4}-c_{2}
\end{gathered}
$$

when $\left[\begin{array}{cc}I_{2} & 0 \\ 0 & 0\end{array}\right] \quad \therefore C(A)=2$

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
0 & 1 & -3 & -1 \\
1 & 0 & 1 & 1 \\
3 & 1 & 0 & 2 \\
1 & 1 & -2 & 0
\end{array}\right]} \\
& \sim\left[\begin{array}{cccc}
0 & 1 & -3 & -1 \\
1 & 0 & 1 & 1 \\
3 & 1 & 0 & 2 \\
1 & 1 & -2 & 0
\end{array}\right] \\
& R_{3} \rightarrow R_{3}=3 R \text {. } \\
& \sim\left[\begin{array}{cccc}
1 & 2 & -5 & -1 \\
1 & 0 & 1 & 1 \\
3 & 0 & 0
\end{array}\right] \quad R_{1} \rightarrow R_{1}+R_{4} \\
& \sim\left[\begin{array}{cccc}
1 & 9 & -5 & -1 \\
0 & -2 & 6 & 2 \\
0 & -5 & 15 & 5 \\
0 & -1 & 3 & 1
\end{array}\right] \\
& R_{2} \rightarrow R_{2}-R_{1} \\
& R_{3} \rightarrow R_{3}-3 R_{1} \\
& R u \rightarrow R u-R 1 \\
& \sim\left[\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & -2 & 6 & 2 \\
0 & -1 & 3 & 1 \\
0 & -1 & 3 & 1
\end{array}\right] \\
& R_{1} \rightarrow R_{1}+R_{2} \\
& R_{3} \rightarrow \frac{R_{3}}{5} \\
& \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & +2 & 6 & 2 \\
0 & +1 & 3 & 1 \\
0 & +1 & 3 & 1
\end{array}\right] \\
& c_{2} \rightarrow \frac{c_{2}}{L_{1}} \\
& c_{3} \rightarrow c_{3}-c_{1} \\
& \mathrm{Cu}_{u} \rightarrow \mathrm{Cu}_{u}-\mathrm{C}_{1} \\
& c_{3} \rightarrow \frac{c_{3}}{3} . \\
& R_{2} \rightarrow \frac{R_{2}}{2} \\
& \mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{2} \\
& \mathrm{Cu}_{4} \rightarrow \mathrm{C}_{4}-\mathrm{C}_{2} \\
& R_{3} \rightarrow R_{3}-R_{2} \\
& R u \rightarrow R_{u}-R_{2}
\end{aligned}
$$

Date
$3 \mid 1212018$ system of Linear Simultoncous equations

1. Write the following equations in matrix form max_{1} $A x=B$ and solve for x by finding A^{-1} where

$$
\begin{aligned}
& A x=B \text { and Solve for } x+2 x-y+z=0 ; 3 x+y-z=8 \\
& x+y-2 z=3 ; 2 x+2
\end{aligned}
$$

Solus Given Equations

$$
\begin{aligned}
& x+y-2 z=3 \\
& 2 x-y+z=0
\end{aligned} \quad A x=B \Rightarrow x=A^{-1} B
$$

$$
3 x+y-z=8
$$

when $A=\left[\begin{array}{ccc}1 & 1 & -2 \\ 2 & -1 & 1 \\ 3 & 1 & -1\end{array}\right] ; x=\left[\begin{array}{l}x \\ y \\ 2\end{array}\right] ; B=\left[\begin{array}{l}3 \\ 0 \\ 8\end{array}\right]$
Consider $A=I_{3} A$.

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 1 & -2 \\
2 & -1 & 1 \\
3 & 1 & -1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] A} \\
& {\left[\begin{array}{ccc}
1 & 1 & -2 \\
0 & -3 & 5 \\
0 & -2 & 5
\end{array}\right] \begin{array}{l}
A=I_{3} A \\
R_{2} \rightarrow R_{2}-2 R_{1} \\
R_{3} \rightarrow R_{3}-3 R_{1}
\end{array}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
-3 & 0 & 1
\end{array}\right] A .} \\
& {\left[\begin{array}{ccc}
1 & 1 & -2 \\
0 & -3 & 5 \\
0 & 0 & 5
\end{array}\right] \begin{array}{ccc}
R_{3} \rightarrow 3 R_{3}-2 R_{2}
\end{array}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
-5 & -2 & 3
\end{array}\right] A} \\
& \left.\left[\begin{array}{ccc}
3 & 0 & -1 \\
0 & -3 & 0 \\
0 & 0 & 1
\end{array}\right] \begin{array}{l}
\begin{array}{l}
R_{1} \rightarrow 3 R_{1}+R_{2} \\
R_{2} \rightarrow R_{2}-R_{3} \\
R_{3} / 5
\end{array} \\
{\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \begin{array}{l}
1 \\
R_{2} \rightarrow R_{1}+R_{3} \\
R_{2} 1-3
\end{array}=\left[\begin{array}{ccc}
3 & 1 & 0 \\
-1 & -2 / 5 & 3 / 5
\end{array}\right] A}
\end{array}\right]
\end{aligned}
$$

$$
\left.\begin{array}{c}
{\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]^{\frac{R_{1}}{3}}=\left[\begin{array}{ccc}
0 & \frac{1}{5} & 1 / 5 \\
-1 & -1 & 1 \\
-1 & -2 / 5 & 3 / 5
\end{array}\right] A} \\
I_{3}=C A \Rightarrow C
\end{array}\right]\left[\begin{array}{ccc}
0 & \frac{1}{5} & 1 / 5 \\
-1 & -1 & 1 \\
-1 & -2 / 5 & 3 / 5
\end{array}\right] .
$$

H|12/2018 $\quad \therefore x=8 / 5, y=5, z=9 / 5$
2. For Non-Homogencous system

* Consistent

The system $A X=B$ is consistent if and only if rank of $A=$ rank of $A B$ and it has a solution

1. The $C(A)=C(A B)=n$ then the system has unique solution.
where $n=$ unknown variables
2. If $e(A)=C(A B)<n$ then the system is consis tent but therese exist infinite number of solutions.
3. If the $(A A) \neq C(A B)$ then the system is inconsistent and it has no solution.
4. Show that the equations $x+y+z=4 ; 2 x+5 y-2 z:$ and $x+7 y-7 z=5$ are not consistent
Solus) Given equations

$$
\begin{aligned}
& x+y+z=4 \\
& 2 x+5 y-2 z=3 \\
& x+y-7 z=5
\end{aligned}
$$

can be expressed as $A x=B$

$$
A=\left[\begin{array}{ccc}
1 & 1 & -1 \\
2 & 5 & -2 \\
1 & 7 & -7
\end{array}\right] ; B=\left[\begin{array}{l}
4 \\
3 \\
5
\end{array}\right] ; x=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

Consider argumented matrix.

$$
\left.\begin{array}{rl}
{[A B]=} & {\left[\begin{array}{cccc}
1 & 1 & 1 & 4 \\
2 & 5 & -2 & 3 \\
1 & 7 & -7 & 5
\end{array}\right]} \\
\sim & {\left[\begin{array}{cccc}
1 & 1 & 1 & 4 \\
0 & 3 & -4 & -5 \\
0 & 6 & -8 & 1
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow R_{2}-2 R_{1} \\
R_{3} \rightarrow R_{3}-R_{1}
\end{array}} \\
\sim & {\left[\begin{array}{cccc}
1 & 1 & 1 & 4 \\
0 & 3 & -4 & -5 \\
0 & 0 & 0 & 11
\end{array}\right] R_{3} \rightarrow R_{3}-2 R_{2}}
\end{array}\right] \begin{array}{ll}
\rho(A)= & C(A B)=3 \\
\therefore((A) \neq C(A B)
\end{array}
$$

Hence given equation are inconsistent and it has no solution
2. Solve the Equations $x+y+z=9,2 x+5 y+7 z=52$. and $2 x+y-z=0$
solus) Given equations

$$
\begin{aligned}
& x+y+z=9 \\
& 2 x+5 y+7 z=52 \\
& 2 x+y-z=0
\end{aligned}
$$

Given equations can be expressed as

$$
A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & 5 & 7 \\
2 & 1 & -1
\end{array}\right] ; x=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] ; B=\left[\begin{array}{c}
9 \\
5^{2} \\
0
\end{array}\right]
$$

Argumented matrix

$$
\begin{aligned}
{[A B] } & =\left[\begin{array}{cccc}
1 & 1 & 1 & 9 \\
2 & 5 & 7 & 52 \\
2 & 1 & -1 & 0
\end{array}\right] \\
& \sim\left[\begin{array}{cccc}
1 & 1 & 1 & 9 \\
0 & 3 & 5 & 34 \\
0 & -1 & -3 & -18
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow R_{2}-2 R_{1} \\
R_{3} \rightarrow R_{3}-2 R_{i}
\end{array} \\
& \sim\left[\begin{array}{cccc}
1 & 1 & 1 & 9 \\
0 & 3 & 5 & 34 \\
0 & 0 & -4 & -20
\end{array}\right] R_{3} \rightarrow 3 R_{3}+R_{2} \\
C(A) & =3, C(A B)=3, n=3 \\
& \therefore C(A)=C(A B)=n
\end{aligned}
$$

Given system is consistent and it has unique no of so solutions

$$
\begin{align*}
x+y+z & =9 \\
3 y+5 z & =34 \rightarrow 0 \tag{1}\\
-4 z & =-20 \\
z & =5 \\
3 y & +25=34 \\
3 y & =34-25 \\
& =9
\end{align*}
$$

$$
\begin{gathered}
y=3 \\
x+3+5=9 \\
x=1 \\
\therefore x=1, y=3, z=5
\end{gathered}
$$

3. Solve the system of linear equations by matrix method $x+y+z=6 ; 2 x+3 y-2 z=2 ; 5 x+y+2 z=13$
solus) Given equations

$$
\begin{aligned}
& x+y+z=6 \\
& 2 x+3 y-2 z=2 \\
& 5 x+y+2 z=13
\end{aligned}
$$

Arguth

$$
A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & 3 & -2 \\
5 & 1 & 2
\end{array}\right] ; X=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] ; B=\left[\begin{array}{c}
6 \\
2 \\
13
\end{array}\right]
$$

Now $A X=B$

$$
\begin{align*}
& {\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & 3 & -2 \\
5 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
6 \\
2 \\
13
\end{array}\right]} \\
& \left.\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & -4 \\
0 & -4 & -3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow R_{2}-2 R_{1} \\
R_{3} \rightarrow R_{3}-5 R_{1}
\end{array}\right]\left[\begin{array}{c}
6 \\
-10 \\
-17
\end{array}\right] \\
& \left.\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & -4 \\
0 & 0 & -19
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \begin{array}{l}
R_{3} \rightarrow R_{3}+4 R_{3} \\
x+y+z=6 \\
y-4 z=-10 \\
-19 z=-57 \\
z=3 \\
y-12=-10 \\
y=2 \\
x+2+3=6 \\
-10
\end{array}\right] \tag{准}\\
& x=1
\end{align*}
$$

4. Examine the following equations are consistent or inconsistent
1)

$$
\begin{aligned}
& x-4 y+7 z=8 \\
& 3 x+8 y-2 z=6 \\
& 7 x-8 y+26 z=31
\end{aligned}
$$

12)

$$
\begin{aligned}
& x+2 y-z=3 \\
& 3 x-y+2 z=1 \\
& 2 x-2 y+3 z=2 \\
& x-y+2=-1
\end{aligned}
$$

solus) 1 Given equations

$$
\begin{aligned}
& x-4 y+7 z=8 \\
& 3 x+8 y-2 z=6 \\
& 7 x-8 y+26 z=31
\end{aligned}
$$

can be expressed as

$$
A=\left[\begin{array}{ccc}
1 & -4 & 7 \\
3 & 8 & -2 \\
7 & -8 & 26
\end{array}\right] ; x=\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right] ; B=\left[\begin{array}{c}
8 \\
6 \\
31
\end{array}\right]
$$

Consider Argumented matrix $[A B]$

$$
\begin{aligned}
{[A B] } & =\left[\begin{array}{cccc}
1 & -4 & 7 & 8 \\
3 & 8 & -2 & 6 \\
7 & -8 & 26 & 31
\end{array}\right], \\
& =\left[\begin{array}{cccc}
1 & -4 & 7 & 8 \\
0 & 20 & -23 & -18 \\
0 & 20 & -23 & -25
\end{array}\right] \begin{array}{l}
\text { Argider } \\
R_{2} \rightarrow R_{2}-3 R_{1} \\
R_{3} \rightarrow R_{3}-7 R_{1}
\end{array} \\
\sim & {\left[\begin{array}{cccc}
1 & -4 & 7 & 8 \\
0 & 20 & -23 & -18 \\
0 & 0 & 0 & -7
\end{array}\right] R_{3} \rightarrow R_{3}-R_{2} } \\
\rho(A)= & 2: C(A B)=3 ; n=3 \\
& C(A) \neq C(A B)
\end{aligned}
$$

Hence given equations are inconsistent and it has no solution
2) Given equations

$$
\begin{array}{ll}
x+2 y-z=3 & x-y+z=-1 \\
3 x-y+2 z=1 & \\
2 x-2 y+3 z=2 &
\end{array}
$$

Given equations can be expressed as

$$
A=\left[\begin{array}{ccc}
1 & 2 & -1 \\
3 & -1 & 2 \\
2 & -2 & 3 \\
1 & -1 & 1
\end{array}\right] ; x=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] ; B=\left[\begin{array}{c}
3 \\
1 \\
2 \\
-1
\end{array}\right]
$$

consider argumented matrix

$$
\begin{aligned}
& {[A B]=\left[\begin{array}{cccc}
1 & 2 & -1 & 3 \\
3 & -1 & 2 & 1 \\
2 & -2 & 3 & 2 \\
1 & -1 & 1 & -1
\end{array}\right]} \\
& \sim\left[\begin{array}{cccc}
1 & 2 & -1 & 3 \\
0 & -7 & 5 & -8 \\
0 & -6 & 5 & -4 \\
0 & -3 & 2 & -4
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow R_{2}-3 R_{1} \\
R_{3} \rightarrow R_{3}-2 R_{1} \\
R_{U} \rightarrow R_{U} U-R_{1}
\end{array} \\
& \sim\left[\begin{array}{cccc}
1 & 2 & -1 & 3 \\
0 & -7 & 5 & -8 \\
0 & 0 & 5 & 20 \\
0 & 0 & -1 & -4
\end{array}\right] \\
& R_{3} \rightarrow 7 R_{3}-6 R_{2} \\
& R U \rightarrow 7 R_{4}-3 R_{2} \\
& \sim\left[\begin{array}{cccc}
1 & 2 & -1 & 3 \\
0 & -7 & 5 & -8 \\
0 & 0 & -1 & -4 \\
0 & 0 & 5 & 20
\end{array}\right] \quad R_{3} \leftrightarrow R_{4} \\
& e(A)=4 ; e(A B)=4 ; n=4 \\
& C(A) \neq C(A B)=n
\end{aligned}
$$

\therefore The given system is consistent and it has unpquesolution

$$
\begin{aligned}
x+2 y-z & =3 \\
-7 y+5 z & =-8 \\
-z & =-4 \\
5 z & =20
\end{aligned}
$$

$$
\begin{aligned}
-7 y+5(u) & =-8 \\
-7 y & =-284 \\
y & =4 \\
x+2(u)-4 & =3 \\
x+u & =3 \\
x & =-1
\end{aligned}
$$

Date
5. For what values of λ the equations $x+y+z=1$;

5li2l2018 $x+2 y+4 z=\lambda ; x+4 y+10 z=\lambda^{2}$, have a solution and solve them completely in each case'.
solus) Given equation

$$
\left.\begin{array}{l}
x+y+z=1 \\
x+2 y+u z=\lambda \\
x+u y+10 z=\lambda^{2}
\end{array}\right] \text { (1) }
$$

system (1) Can be expressed as a matrix form of

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 4 \\
1 & 4 & 10
\end{array}\right] \quad ; x=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] ; B=\left[\begin{array}{c}
1 \\
\lambda_{2} \\
\lambda^{2}
\end{array}\right]
$$

Argumented matrix

$$
\begin{aligned}
{[A B] } & =\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 2 & 4 & \lambda \\
1 & 4 & 10 & \lambda^{2}
\end{array}\right] \\
& \sim\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & 1 & 3 & \lambda-1 \\
0 & 3 & 9 & \lambda^{2}-1
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow R_{2}-R_{1} \\
R_{3} \rightarrow R_{3}-R_{1}
\end{array} \\
& \sim\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & 1 & 3 & \lambda-1 \\
0 & 0 & 0 & \lambda^{2}-3 \lambda+2
\end{array}\right] R_{3} \rightarrow R_{3}-3 R_{2}
\end{aligned}
$$

$$
C(A)=C(A B)=3
$$

But given that the system has a solution it must be consistent. So that

$$
\begin{gathered}
\lambda^{2}-3 \lambda+2=0 \\
(\lambda-2)(\lambda-1)=0 \\
\lambda=1,2
\end{gathered}
$$

$\operatorname{cose}(i)$

$$
\begin{aligned}
& \text { if } \lambda=1 \\
& {[A B]=\left[\begin{array}{llll}
1 & 1 & 1 & 9 \\
0 & 1 & 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
& \\
& \quad C(A)=2 ; C(A B)=2, n=3 \\
& \therefore C(A)=C(A B)=r<n
\end{aligned}
$$

Given equation are consistent and will have infinite no. of solutions.
$x+y+z=1$

$$
y+3 z=0
$$

let $n-r=3-2=1$ L.I.S
Let $z=k$

$$
\begin{aligned}
y+3 k & =0 \\
y & =-3 k \\
x-3 k+k & =1 \\
x & =1+2 k \\
{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] } & =\left[\begin{array}{c}
1+2 k \\
-3 k \\
k
\end{array}\right] \\
& =\left[\begin{array}{c}
1 \\
0 \\
0
\end{array}\right]+k\left[\begin{array}{c}
2 \\
-3 \\
1
\end{array}\right]
\end{aligned}
$$

$\operatorname{casc}(i i)$

$$
\begin{aligned}
& \text { if } \lambda=2 \\
& {[A B]=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & 1 & 3 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
& C(A)=2 ; C(A B)=2, n=3 \\
& \therefore C(A)=C(A B)=\gamma 《 n
\end{aligned}
$$

Given equation consistent and will have infinite no of solutions

$$
\begin{aligned}
& x+y+z=1 \\
& y+3 z=1 \\
& \text { let } z=k \\
& y+3 k=1 \\
& y=1-3 k \\
& x+x-3 k+k=x \\
& x=2 k \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
2 k \\
1-3 k \\
k
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+k\left[\begin{array}{c}
2 \\
-3 \\
1
\end{array}\right.}
\end{aligned}
$$

2 If $a+b+c \neq 0$, show that the system of equation $-2 x+y+z=a, x-2 y+z=b, \quad x+y-2 z=c$ has no solution. If $a+b+c=0$. Show that it has infinitely many solutions. show that it.
Solus Given Equations

$$
\left.\begin{array}{rl}
2 x+y+z & =a \\
x-2 y+z & =b \\
x+y-2 z & =c
\end{array}\right] \text { (1) }
$$

system (1) can be expressed as the matrix form of $A X=B$

$$
A=\left[\begin{array}{ccc}
-2 & 1 & 1 \\
1 & -2 & 1 \\
1 & 1 & -2
\end{array}\right] ; B=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] ; \quad x=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

Argumented matrix

$$
\begin{aligned}
& {[A B] }=\left[\begin{array}{cccc}
-2 & 1 & 1 & a \\
1 & -2 & 1 & b \\
1 & 1 & -2 & c
\end{array}\right] \\
&=\left[\begin{array}{cccc}
1 & 1 & -2 & c \\
1 & -2 & 1 & b \\
-2 & 1 & 1 & a
\end{array}\right] R_{1} \leftrightarrow R_{3} \\
& \sim\left[\begin{array}{cccc}
1 & 1 & -2 & c \\
0 & -3 & 3 & b-c \\
0 & 3 & -3 & a+2 c
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow R_{2}-R_{1} \rightarrow R_{3}+2 R_{1} \\
\end{array} \\
& \sim\left[\begin{array}{cccc}
1 & 1 & -2 & c \\
0 & -3 & 3 & b-c \\
0 & 0 & 0 & a+b+c
\end{array}\right] R_{3} \rightarrow R_{3}+R_{2}
\end{aligned}
$$

if $a+b+c \neq 0$

$$
\begin{gathered}
C(A)=2 ; C(A B)=3= \\
C(A) \neq C(A B)
\end{gathered}
$$

Given system are inconsistent and will hove no Solution.
if $a+b+c=0$

$$
\begin{aligned}
& C(A)=2 ; \quad \rho(A B)=2 ; n=3 \\
& C(A)=C(A B)=\gamma<n
\end{aligned}
$$

Given equations are consistent and will have infinite no of solutions

$$
\begin{aligned}
x+y-2 z & =c \\
& -3 y+3 z=b-c
\end{aligned}
$$

$$
\begin{aligned}
& n-r=3-2=1 \quad L \cdot I \cdot S \\
& \text { let } z=k \\
& -3 y+3 k=b-c \\
& 3 y=3 k-b+c \\
& y=k-\frac{b}{3}+\frac{c}{3} \\
& x+k-\frac{b}{3}+\frac{c}{3}-\frac{k}{}=c \\
& x=k+\frac{b}{3}+\frac{2 c}{3} \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
k+\frac{b}{3}+\frac{2 c}{3} \\
k-b / 3+c / 3 \\
k
\end{array}\right]} \\
& =k\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
b / 3+2 c / 3 \\
-b / 3+c / 3 \\
0
\end{array}\right]
\end{aligned}
$$

3. Solve the system of linear equations by matrix method
i) ${ }^{\circ}$

$$
\begin{aligned}
& x+y+z=6 \\
& 2 x+3 y-2 z=2 \\
& 5 x+y+2 z=13
\end{aligned}
$$

ii) $x+y+4 z=6$
iii)

$$
x+2 y-2 z=6
$$

$$
x+y+z=6
$$

$$
\begin{aligned}
& x+y+2 z=4 \\
& 2 x-y+3 z=9 \\
& 3 x-y-z=2
\end{aligned}
$$

iv)

$$
\begin{aligned}
& x+y+z=6 \\
& x+2 y+3 z=14 \\
& x+4 y+7 z=30
\end{aligned}
$$

$$
\begin{aligned}
& x+y+z=6 \\
& x+2 y+3 z=14 \\
& x+4 y+7 z=30 \quad \text { These cautions car } \\
& A=\left[\begin{array}{lll}
1 & A x= \\
1 & 2 & 3 \\
1 & 4 & 7
\end{array}\right] ; x=\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right], \quad B=\left[\begin{array}{c}
6 \\
14 \\
30
\end{array}\right]
\end{aligned}
$$

$$
\left.\begin{array}{l}
A x=B \\
{\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 9 & 3 \\
1 & 4 & 7
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
6 \\
14 \\
30
\end{array}\right]} \\
{\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 3 & 6
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow R_{2}-R_{1} \\
R_{3} \rightarrow R_{3}-R_{1}
\end{array}=\left[\begin{array}{l}
6 \\
8 \\
24
\end{array}\right]} \\
{\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] R_{3} \rightarrow R_{3}-3 R_{2}=\left[\begin{array}{l}
6 \\
8 \\
0
\end{array}\right]} \\
x+y+z=6 \\
y+2 z=8 \\
3 y+2(0)=8 \\
y=8 \\
x+8+0=6 \\
x=6-8 \\
x=-2
\end{array}\right] \begin{aligned}
& x=1
\end{aligned}
$$

(Or)
Consistent Method

$$
\text { Let } A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 4 & 7
\end{array}\right] ; x=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \text { and } B=\left[\begin{array}{c}
6 \\
14 \\
30
\end{array}\right]
$$

Argumented matrix

$$
\left[\begin{array}{cccc}
{\left[\begin{array}{cccc}
1 & 1 & 1 & 6 \\
0 & 1 & 2 & 8 \\
0 & 3 & 61 & 2 R_{1}
\end{array}\right] \begin{array}{ccc}
R_{2} \rightarrow R_{2}-R_{1} \\
R_{3} \rightarrow R_{3}-R_{1}
\end{array}} \\
{\left[\begin{array}{cccc}
9 & 1 & 2 & 6 \\
0 & 0 & 0 & 0
\end{array}\right] \begin{array}{ccc}
1 \\
R_{3} \rightarrow R_{3}-3 R_{2}
\end{array}}
\end{array}\right.
$$

$$
\begin{aligned}
\therefore C(A) & =2, C(B)=9, n=3 \\
C(A) & =Q(A B)-\cap
\end{aligned}
$$

The given system of equations is consistent and hos infinite no of solutions

$$
\begin{aligned}
x+y+z & =6 \\
y+2 z & =8 \\
\text { let } z & =k \\
y+2 k & =8 \\
y & =8-2 k ; \\
\bar{x}-2 k+2 k & =8 \\
x+8-2 k+k & =6 \\
x-k & =6-8 \\
x-k & =-2 \\
x & =-27 k \\
x & =k-2
\end{aligned}
$$

iii) Matrix method Given equations

$$
\begin{aligned}
& x+y+2 z=4 \\
& 2 x-y+3 z=9 \\
& 3 x-y-z=2
\end{aligned}
$$

These equations can be expressed as $A x=B$

$$
\begin{aligned}
& \text { These equations can be } A=\left[\begin{array}{ccc}
1 & 1 & 2 \\
9 & -1 & 3 \\
3 & -1 & -1
\end{array}\right] ; B=\left[\begin{array}{c}
4 \\
9 \\
2
\end{array}\right] ; x=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \\
& \left.\left[\begin{array}{ccc}
1 & 2 \\
2 & -1 & 3 \\
3 & -1 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
4 \\
19 \\
2
\end{array}\right] ;\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 2 \\
0 & -3 & -9 \\
0 & -4 & -7
\end{array}\right] \begin{array}{c}
4 \\
R_{2} \rightarrow R_{2}-2 R_{1} \\
R_{3} \rightarrow R_{3}-3 R_{1}
\end{array}\right]
\end{aligned}
$$

$$
\left.\begin{array}{l}
{\left[\begin{array}{ccc}
1 & 1 & 2 \\
0 & -3 & -1 \\
0 & -4 & -7
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
4 \\
1 \\
-10
\end{array}\right]} \\
{\left[\begin{array}{ccc}
1 & 1 & 2 \\
0 & -3 & -1 \\
0 & 0 & -17
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]_{R_{3}} \rightarrow 3 R_{3}-4 R_{2}} \\
x+y+2 z
\end{array}=4\right]\left[\begin{array}{c}
4 \\
1 \\
-34
\end{array}\right], ~ \begin{aligned}
&-3 y-z=1 \\
&-17 z=-34 \\
& z=2 \\
&-3 y-2=1 \\
&-3 y=3 \\
& y=-1 \\
& x-1+y=4 \\
& x=1
\end{aligned}
$$

(or)

$$
\therefore x=1, y=-1, z=2
$$

Consistent Method

$$
A=\left[\begin{array}{ccc}
1 & 1 & 2 \\
2 & -1 & 3 \\
3 & -1 & -1
\end{array}\right] ; x=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] ; B=\left[\begin{array}{c}
y \\
3 \\
2
\end{array}\right]
$$

Argumented: matrix

$$
\begin{aligned}
& {[A B]=\left[\begin{array}{cccc}
1 & 1 & 2 & 4 \\
2 & -1 & 3 & 9 \\
3 & -1 & -1 & 2
\end{array}\right],} \\
& \sim\left[\begin{array}{cccc}
1 & 1 & 2 & 4 \\
0 & -3 & 1 & 1 \\
0 & -4 & -7 & -10
\end{array}\right] \begin{array}{lll}
R_{2} \rightarrow & R_{2}-2 R_{1},
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \sim\left[\begin{array}{cccc}
1 & 1 & 2 & 4 \\
0 & -3 & -1 & 1 \\
0 & 0 & -17 & -34
\end{array}\right] R_{3} \rightarrow 3 R_{3}-4 R_{2} \\
& C(A)=3 ; C(A B)=3 ; n=3 \\
& \quad(A) \neq C(A B)=n
\end{aligned}
$$

The given system of equation is consistent it has a solution.

$$
\left.\begin{array}{cl}
x+y+2 z=4 \cdot \\
-3 y-z=1 \\
-17 z=-34 \\
z & =2
\end{array} \quad \begin{array}{rl}
-3 y-2=1 ; & x-1+4=1 \\
-3 y=3 \\
y=-1
\end{array}\right]
$$

ii) Given Equations

$$
\begin{aligned}
& x+y+4 z=6 \\
& x+2 y-2 z=6 \\
& x+y+z=6
\end{aligned} \quad A=\left[\begin{array}{ccc}
1 & 1 & 4 \\
1 & 2 & -2 \\
1 & 1 & 1
\end{array}\right] ; X=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] ; B=\left[\begin{array}{l}
6 \\
6 \\
6
\end{array}\right]
$$

Matrix method
The given system of equations can be expressed

$$
\begin{aligned}
& \text { as } A X=B \\
& {\left[\begin{array}{ccc}
1 & 1 & 4 \\
1 & 2 & -2 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
6 \\
6 \\
6
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
1 & 1 & 4 \\
\therefore & 1 & -6 \\
0 & 0 & -3
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow R_{2}-R_{1} \\
R_{3} \rightarrow R_{3}-R_{1}
\end{array}=\left[\begin{array}{l}
6 \\
0 \\
0
\end{array}\right]} \\
& x+y+4 z=6 \text {. } \\
& =4 ; \quad y-6 z=0 \quad ; y=0 ; \quad x=6 ; z=0 \\
& -3 z=0 \\
& z=0
\end{aligned}
$$

Consistent method
Argumented motrin

$$
\begin{aligned}
& {[A B]=\left[\begin{array}{cccc}
1 & 1 & 4 & 6 \\
1 & 2 & -2 & 6 \\
1 & 1 & 1 & 6
\end{array}\right]} \\
& \sim\left[\begin{array}{cccc}
1 & 1 & 4 & 6 \\
0 & 1 & -6 & 0 \\
0 & 0 & -3 & 0
\end{array}\right] R_{2} \rightarrow R_{2}-R_{1} \\
& C(A)=3 ; C(A B)=3 ; n=3 \\
& \therefore C(A)=C(A B)=n
\end{aligned}
$$

The given system of equations is consistent and has unique solution

$$
\begin{array}{rrr}
x+y+4 z=6 & ; y=0 ; & x+0+0=6 \\
y-6 z=0, & x=6 \\
-3 z=0 & & \\
z=0 & &
\end{array}
$$

Date
$6^{\prime} / 2118^{4}$. Find the values of λ for which the system of equations $3 x-y+u z=3 ; x+2 y-3 z=-2 ;$ $6 x+5 y+\lambda z=-3$ will have infinite no of solutions Solve them with the λ values
solus Given equations

$$
\left.\begin{array}{l}
3 x-y+4 z=3 \\
x+2 y-3 z=-2 \\
6 x+5 y+\lambda z=-3
\end{array}\right] \text { (1) }
$$

system (1) can be expressed in a matrix form

$$
A X=B
$$

$$
\begin{aligned}
{[A B] } & =\left[\begin{array}{cccc}
3 & -1 & 4 & 3 \\
1 & 2 & -3 & -2 \\
6 & 5 & \lambda & -3
\end{array}\right] \\
\sim & {\left[\begin{array}{cccc}
3 & -1 & 4 & 3 \\
0 & 7 & -13 & -9 \\
0 & 7 & \lambda-8 & -9
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow 3 R_{2}-R_{1} \\
R_{3} \rightarrow R_{3}-2 R_{1}
\end{array} } \\
& \sim\left[\begin{array}{cccc}
3 & -1 & 4 & 3 \\
0 & 7 & -13 & -9 \\
0 & 0 & \lambda+5 & 0
\end{array}\right] R_{3} \rightarrow R_{3}-R_{2}
\end{aligned}
$$

$$
\begin{aligned}
\lambda & =-5 \\
C(A) & =2 ; \quad e(A B)=2 ; \quad n=3 \\
& C(A)=C(A B)=r<n
\end{aligned}
$$

Given equations have infinite no: of solutions

$$
\begin{aligned}
x & =-5 \text { then } \\
{[Q B T} & =\left[\begin{array}{cccc}
3 & -1 & 4 & 3 \\
0 & 7 & -13 & -9 \\
0 & 0 & 0 & 0
\end{array}\right] \\
1.1 . c &
\end{aligned}
$$

$$
\begin{gathered}
\text { A-r=3-2=1} \\
3 x-y+4 z=3 \\
7 y-13 z=-9 \\
z=K \\
7 y-13 k=-9 \\
7 y=-9+13 k \\
y=-\frac{9}{7}+\frac{13}{7} k
\end{gathered}
$$

$$
\begin{aligned}
& 3 x+\frac{9}{7}-\frac{13}{7} k+4 k=3 \\
& x=-\frac{15}{7} k+\frac{12}{7} \\
& \therefore x=\frac{4}{7}-\frac{5}{7} k-\frac{5}{7} k ; y=\frac{-9}{7}+\frac{13}{7} k, z=k
\end{aligned}
$$

5 . Find whether the following set of equations are consistent

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}+x_{4}=0 \\
& x_{1}+x_{2}+x_{3}-x_{4}=4 \\
& x_{1}+x_{2}-x_{3}+x_{4}=-4 \\
& x_{1}-x_{2}+x_{3}+x_{4}=2
\end{aligned}
$$

Solus Given equations

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}+x_{u}=0 \\
& x_{1}+x_{2}+x_{3}-x_{u}=4 \\
& x_{1}+x_{2}-x_{3}+x_{4}=4
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}+x_{2}-x_{3}+x_{4} \\
& x_{1}-x_{2}+x_{3}+x_{4}=2 \\
& \text { can be expressend in a matrix form }
\end{aligned}
$$

set (1) can be expressend in a matrix form $A x=B$ where

$$
A=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & -1 \\
1 & 1 & -1 & 1 \\
1 & -1 & 1 & 1
\end{array}\right] ; x=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] ; B=\left[\begin{array}{c}
0 \\
4 \\
-4 \\
2
\end{array}\right]
$$

Argumented matrix

$$
\left.\begin{array}{l}
{[A B] \sim}
\end{array}\left[\begin{array}{ccccc}
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & -1 & 4 \\
1 & 1 & -1 & 1 & -4 \\
1 & -1 & 1 & 1 & 2
\end{array}\right] \quad\left[\begin{array}{ccccc}
1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & -2 & 4 \\
0 & 0 & -2 & 0 & -4 \\
0 & -2 & 0 & 0 & 2
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow R_{2}-R_{1} \\
R_{3} \rightarrow R_{3}-R_{1} \\
R_{4} \rightarrow R_{4}-R_{1}
\end{array}\right] \quad C(A B)=u ; \quad n=4
$$

$$
e(A)=e(A B)=r=n
$$

Given equations are consistent and will have a. unique solution

Consistency of system of Homogeneous linear Equations

1. Consider a system of m-homogeneous linear equations in n-unknowns.

$$
\begin{align*}
& a_{11} x_{1} t a_{12} x_{2}+a_{13} x_{3}+\cdots+a_{1 n} x_{n}=0 \\
& \text { 2. and } x_{1}+a_{22} x_{2}+a_{23} x_{3}+\cdots+a_{2 n i x}=0 \\
& \text { 3. } a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+\cdots+a_{3 n} x_{n}=0 \tag{1}\\
& \text { 4. } \quad a_{m_{1} x_{1}+a_{2} m_{2} x_{2}+\cdots+a_{n} \cdot x_{n}=0}
\end{align*}
$$

system one can be return as in a matrix form

$$
A x=0 .
$$

F. If $C(A)=n$ then the system of equations hove only trivial solution i.e., zero solution

* If $\rho(A)=n$, then the system of equations have, an infinite no of non-trivial solutions, in this case $n-\gamma$ linearly independent solution
1 Solve $x+y-2 z+3 \omega=0 ; x-2 y+z-\omega=0 ; 4 x+y-5 z$ $+8 \omega=0 ; 5 x-7 y+2 z-\omega=0$, Given equation
solus) Given equation

$$
\begin{align*}
& x+y-2 z+3 \omega=0 \tag{1}\\
& x-2 y+z-\omega=0 \\
& 4 x+y-5 z+8 \omega=0 \\
& 5 x-7 y+2 z-\omega=0
\end{align*}
$$

system (1) can be expressed in the form of a matrix

$$
A=\left[\begin{array}{cccc}
1 & 1 & -2 & 3 \\
1 & -2 & 1 & -1 \\
4 & 1 & -5 & 8 \\
5 & -7 & 2 & -1
\end{array}\right] ; x=\left[\begin{array}{l}
x \\
y \\
z \\
\omega
\end{array}\right] ; 0=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right.
$$

$$
\begin{aligned}
& \sim\left[\begin{array}{cccccc}
1 & 1 & -2 & 3 & 0 \\
0 & -3 & 3 & -4 & 0 \\
0 & -3 & 3 & -4 & 0 \\
0 & -12 & 12 & -16 & 0
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow R_{2}-R_{1} \\
R_{3} \rightarrow R_{3}-4 R_{1} \\
R_{4} \rightarrow R_{4}-5 R_{1}
\end{array} \\
& \sim\left[\begin{array}{ccccc}
1 & 1 & -2 & 3 & 0 \\
0 & -3 & 3 & -4 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \begin{array}{l}
R_{3} \rightarrow R_{3}-R_{2} \\
R_{4} \rightarrow R_{4}-4 R_{2}
\end{array} \\
& C(A)=2, \quad n=4
\end{aligned}
$$

Given equation have infinite no. of solutions of

$$
r<n
$$ non-trivial solution.

$$
\begin{gathered}
n-r=4-2=2 \quad \omega \cdot I \cdot s \\
x+y-2 z+3 \omega=0 \\
-3 y+3 z-u \omega=0 \\
k \neq \omega=k_{1} \quad z=k_{2} \\
3 y=3 k_{2}-u k_{1} \\
y=k_{2}-\frac{u}{3} k_{1} \\
x+k_{2}-\frac{4}{3} k_{1}-2 k_{2}+3 k_{1}=0 \\
x-k_{2}+\frac{5}{3} k_{1}=0 \\
x=k_{2}-\frac{5}{3} k_{1} \\
{\left[\begin{array}{l}
x \\
y \\
z \\
\omega
\end{array}\right]=\left[\begin{array}{c}
k_{2}-\frac{5}{3} k_{1} \\
k_{2}-\frac{4}{3} k_{1} \\
k_{2} \\
k_{1}
\end{array}\right]}
\end{gathered}
$$

2. Solve $x 4 y-3 z+2 w=0,2 x-y+2 z-3 w=0$

$$
3 x-2 y+z-4 w=0,-4 x+y-3 z+w=0
$$

solus Given Equations

$$
\begin{align*}
& x+y-3 z+2 w=0 \\
& 2 x-y+2 z-3 w=0 \\
& 3 x-2 y+z-4 w=0 \tag{1}\\
& -4 x+y-3 z+w=0
\end{align*}
$$

Given system of equations. (1) can be expressed

$$
\begin{aligned}
& \text { as } A X=0 \\
& A=\left[\begin{array}{cccc}
1 & 1 & -3 & 2 \\
2 & -1 & 2 & -3 \\
3 & -2 & 1 & -4 \\
-u & 1 & -3 & 1
\end{array}\right] ; x=\left[\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right] ; \\
& \sim=\left[\begin{array}{cccc}
1 & 1 & -3 & 2 \\
0 & -3 & 8 & -7 \\
0 & -5 & 10 & -10 \\
0 & 5 & -15 & 9
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow R_{2}-2 R_{1} \\
R_{3} \rightarrow R_{3}-3 R_{1} \\
R_{u} \rightarrow R_{u}+U R_{1}
\end{array} \\
& \sim\left[\begin{array}{cccc}
1 & 1 & -3 & 2 \\
0 & -3 & 8 & -7 \\
0 & 0 & -10 & 5 \\
0 & 0 & -5 & -8
\end{array}\right] \\
& R_{3} \rightarrow 3 R_{3}-5 R_{2} \\
& \sim\left[\begin{array}{cccc}
1 & 1 & -3 & 2 \\
0 & -3 & 8 & -7 \\
0 & 0 & -10 & 5 \\
0 & 0 & 0 & -21
\end{array}\right] R_{u \rightarrow 2 R_{4}-R_{3}}
\end{aligned}
$$

$$
\begin{gathered}
e(A)=4, \quad n=4 \\
r=n
\end{gathered}
$$

Given Equation have trivial Solution

$$
x=0 ; y=0 ; z=0 ; w=0
$$

3 Solve $x+y+\omega=0 ; y+z=0 ; x+y+z+\omega=0$;

$$
x+y+2 z=0
$$

(sole) Given equations
system of

$$
\left.\left.\begin{array}{c}
\left.\begin{array}{c}
x+y+w=0 \\
y+z=0 \\
x+y+z+w=0 \\
x+y+2 z=0
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 2
\end{array}\right]
\end{array}\right] \quad \begin{array}{c}
\text { expressed in } \\
A x=0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right]
$$

Equation (1) can hove be expressed in the form

$$
\sim C(A)=U \quad n=u
$$

\therefore The given system of equations can. have trivial solution.

$$
x=0 ; y=0 ; z=0 ; \omega=0
$$

4. solve the system of equations $x+2 y+(2+k) z=0$
sate $2 x+(2+k) y+4 z=0, \quad 7 x+13 y+(18+k) z=0$ for all vols, aiolis of k
Sola) Given Equations

$$
\begin{aligned}
& x+2 y+(2+k) z=0 \\
& 2 x+(2+k) y+4 z=0 \\
& 7 \gamma+13 y+(18+k) z=0
\end{aligned} \rightarrow \text { (1) }
$$

system (1) can be expressed as a matrix form of $A x=13$ where

$$
A=\left[\begin{array}{ccc}
1 & 2 & 2+k \\
2 & 2+k & 4 \\
7 & 13 & 18+k
\end{array}\right] ; x=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] ; \quad B=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The given system has a: solution for all values of k if the system has a nontrivial solution. ie.,

$$
\begin{array}{ll}
C(A)<n ; & n=3 \\
C(A)<3
\end{array}
$$

Given matrix $A(i S, 3 \times 3$ matrix so that

$$
\begin{gathered}
|A|=0 \\
|A|=\left|\begin{array}{ccc}
1 & 2+k \\
2 & 2+k & 4 \\
-13 & 18+k
\end{array}\right|=0 \\
1[(18+k)(2+k)-52]-2[2(18+k)-28]+(2+k)(26-7(2+1 k)]=0 \\
36+18 k+2 k+k^{2}-52-2(36+2 k-28)+(2+k)(26-14 \\
k^{2}+20 k-16-16-4 k+24-14 k+12 k-7 k^{2}=0 \\
-6 k^{2}+14 k-8=0 \\
3 k^{2}-7 k+4=0 \\
3 k^{2}-3 k-4 k+4=0 \\
3 k(k-1)-4(k-1)=0 \\
(k-1)(3 k-4)=0
\end{gathered}
$$

$$
\begin{gathered}
(k-1)(3 k-4)=0 \\
k=1 ; k=413
\end{gathered}
$$

cos eli)

$$
\begin{aligned}
\text { If } & =\left[\begin{array}{ccc}
1 & 2 & 2 \\
2 & 3 & 4 \\
7 & 13 & 19
\end{array}\right] \\
& \sim\left[\begin{array}{ccc}
1 & 9 & 3 \\
0 & -1 & -2 \\
0 & -1 & -2
\end{array}\right] \quad \begin{array}{l}
P_{2} \rightarrow R_{2}-2 P_{1} \\
R_{3} \rightarrow R_{3}-7 R_{1}
\end{array} \\
& \sim\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & -1 & -2 \\
0 & 0 & 0
\end{array}\right] \quad R_{3} \rightarrow R_{3}-R_{2} \\
& C(A)=2, n=3, C(A)<n
\end{aligned}
$$

When $k=1$ the system has a nontrivial solution

$$
\begin{aligned}
n-r=3-2 & =r t \cdot I \cdot S \\
x+2 y & +3 z=0 \\
-y-2 z & =0
\end{aligned}
$$

Let $z=K$

$$
y=-2 k
$$

$$
\begin{aligned}
x-4 k+3 k & =0 \\
\gamma & =k
\end{aligned}
$$

$$
x=k
$$

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
k \\
-2 k \\
k
\end{array}\right]=k\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]
$$

case (ii)

$$
\begin{aligned}
& \text { of } k=4 / 3 g \\
& A=\left[\begin{array}{ccc}
1 & 10 / 3 \\
2 & 10 / 3 & 4 \\
7 & 13 & 58 / 3
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \sim\left[\begin{array}{ccc}
1 & 2 & 10 / 3 \\
0 & -2 / 3 & -2 / 3 \\
0 & -1 & -12 / 3
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow R_{2}-2 R_{1} \\
R_{3} \rightarrow R_{3}-7 R_{1}
\end{array} \\
& \sim\left[\begin{array}{ccc}
1 & 2 & 10 / 3 \\
0 & -2 / 3 & -8 / 3 \\
0 & 0 & 0
\end{array}\right] R_{3} \rightarrow \frac{2}{3} R_{3}-R_{2} \\
& C(A)=2 ; n=3 \\
& \therefore C\left(A_{1}\right)<n+ \\
& n-r=3-2=1 \quad L \cdot I . S \\
& x+2 y+10 / 3 z=0, \quad-\frac{2}{3} y-\frac{8}{3} z=0 \\
& \text { let } z=k \\
& -\frac{2}{3} y-\frac{8}{3} k=0 ; \quad y=\frac{8}{3} k \cdot x-\frac{3}{2} \\
& -\frac{2}{3} \cdot y=\frac{8}{3} k \quad i \quad y=-4 k \\
& x-\delta k+\frac{10}{3} k=0 \\
& x=\frac{14}{3} k \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
\frac{14}{3} k \\
-4 k \\
k
\end{array}\right]=k\left[\begin{array}{c}
14 / 3 \\
-4 \\
1
\end{array}\right]}
\end{aligned}
$$

5. Solve the system $\cdot \lambda x+y+z=0 ; x+\lambda y+z=0$; $x+y+\lambda z=0$; if it has non-zero solutions only solus Given Equations

$$
\left.\begin{array}{c}
\lambda x+y+z=0 \\
x+\lambda y+z=0 \\
x+y+\lambda z=0
\end{array}\right]
$$

Then system (1) can be expressed in the matrix form $A x=0$

$$
A=\left[\begin{array}{lll}
\lambda & 1 & 1 \\
1 & \lambda & 1 \\
1 & 1 & \lambda
\end{array}\right] i x=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] ; B=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Given that given system has a non trivial solution

$$
e(A)<n \quad, n=3
$$

$e(A)<3$
Given matrix is a 3×3 matrix so that.

$$
\begin{gathered}
|A|=0 \\
|A|=\left[\begin{array}{ccc}
\lambda & 1 & 1 \\
1 & \lambda & 1 \\
1 & 1 & \lambda
\end{array}\right]=0 \\
\lambda\left(\lambda^{2}-1\right)-1(\lambda-1)+1(1-\lambda)=0 \\
\lambda^{3}-\lambda-\lambda+1+1-\lambda=0 \\
\lambda^{3}-3 \lambda+2=0 \\
(\lambda-1)\left(\lambda^{2}+\lambda-2\right)=0 \\
(\lambda-1)\left(\lambda^{2}+2 \lambda-\lambda-2\right)=0 \\
(\lambda-1)(\lambda(\lambda+2)-1(\lambda+2))=0 \\
(\lambda-1)(\lambda-1)(\lambda+2)=0 \\
\quad \lambda=1,1,-2
\end{gathered}
$$

$\operatorname{case}(i)$

$$
\begin{aligned}
k & =\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] \\
& \sim\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow R_{2}-R_{1} \\
R_{3} \rightarrow R_{3}-R_{1}
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
\therefore C(A)=1, n=3 \\
e(A)<n \\
n-r=3-1=2 \\
x+y+z=0 \\
y=k_{1} ; \quad z=k_{2} \\
x+k_{1}+k_{2}=0 \\
x=\left(2 k_{1}+k_{2}\right) \\
{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
-\left(2 k_{1}+k_{2}\right) \\
k_{1} \\
k_{2}
\end{array}\right]=\left[\begin{array}{c}
-2 \\
\text { the sustem } \\
h i s
\end{array}\right]}
\end{gathered}
$$

case lii)

$$
\begin{array}{lll}
0 & 0 & 0
\end{array} \quad \therefore \text { For } x=-2 \text { the system } \quad \text { has a non trivial }
$$ has a non trivial solution

$$
\begin{aligned}
& \lambda=-2 \\
& A=\left[\begin{array}{ccc}
-2 & 1 & 1 \\
1 & -2 & 1 \\
1 & 1 & 1 \\
1 & 1 & -2
\end{array}\right] \\
& \sim\left[\begin{array}{ccc}
-2 & 1 & 1 \\
0 & -3 & 3 \\
0 & 3 & -3
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow 2 R_{2}+R_{1} \\
R_{3} \rightarrow 2 R_{3}+R_{1}
\end{array} \\
& \sim\left[\begin{array}{ccc}
-2 & 1 & 1 \\
0 & -3 & 3 \\
0 & 0 & 0
\end{array}\right] R_{3} \rightarrow R_{3}+R_{2} \\
& C(A)<n \\
& n-r=3-2=1 \quad L \cdot I \cdot S \\
& z=k \\
& -2 x+y+z=0 \\
& -3 y+3 z=0 \\
& -3 y+3 k=0 \\
& -8 y=-3 k \\
& y=k
\end{aligned}
$$

$$
\begin{gathered}
-9 x+k+k=0 \\
-k x=-x, k \\
x=k \\
{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
k \\
k \\
k
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]}
\end{gathered}
$$

HeW
6 show that the only neal number λ for which the system $x+2 y+3 z=\lambda x ; \quad 3 x+y+2 z=\lambda y ; 3 x+3 y+z=\lambda z$. hos non. zero solution is 6 and solve them when $\lambda=6$
sold. Given system con be expressed as $A \%=0$ where

$$
A=\left[\begin{array}{ccc}
1-\lambda & 2 & 3 \\
3 & 1-\lambda & 2 \\
2 & 3 & 1-\lambda
\end{array}\right] ; x=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \text { and } 0=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Here number of variables $n=3$
The given system of equations possess a non-zero solution of

Rank of $A<n$

$$
l(A)<3
$$

For this $|A|=0$

$$
\left[\begin{array}{ccc}
1-\lambda & 2 & 3 \\
3 & 1-\lambda & 2 \\
2 & 3 & 1-\lambda
\end{array}\right]=0
$$

Applying $\quad \begin{aligned} R_{1} & \rightarrow R_{1}+R_{2}+R_{3} \\ 6-\lambda & 6-\lambda\end{aligned}$

$$
\left.\therefore \begin{array}{ccc}
R_{1} \rightarrow R_{1}+R_{2}+R_{3} \\
6-\lambda & 6-\lambda & 6-\lambda \\
3 & 1-\lambda & 2 \\
2 & 3 & 1-\lambda
\end{array} \right\rvert\,=0
$$

$$
\begin{aligned}
& (6-\lambda)\left|\begin{array}{ccc}
1 & 1 & 1 \\
3 & 1-\lambda & 2 \\
2 & 3 & 1-\lambda
\end{array}\right|=0 \\
& (6-\lambda)\left|\begin{array}{ccc}
1 & 0 & 0 \\
3 & -(\lambda+2) & -1 \\
2 & 1 & -(\lambda+1)
\end{array}\right| \begin{array}{ll}
c_{2} \rightarrow c_{2}-c_{1} \\
c_{3} \rightarrow c_{3}-c_{1}
\end{array}=0 \\
& \begin{array}{l}
(6-\lambda)[1((\lambda+2)(\lambda+1)+1)-0(-3(\lambda+1)-2)+0(3+2(\lambda+=0 \\
(6-\lambda)\left[\lambda^{2}+2 \lambda+\lambda+2+1-0+0\right]=0 \Rightarrow(6-\lambda)\left[\lambda^{2}+3 \lambda+3\right]: \\
(6-\lambda)[15 \lambda+3]=0
\end{array} \\
& \begin{array}{l}
(6-\lambda)[1((\lambda+2)(\lambda+1)+1)-0(-3(\lambda+1)-2)+0(3+2(\lambda i=0 \\
(6-\lambda)\left[\lambda^{2}+2 \lambda+\lambda+2+1-0+0\right]=0 \Rightarrow(6-\lambda)\left[\lambda^{2}+3 \lambda+3\right]: \\
(6-\lambda)[4 \lambda+3]=0
\end{array} \\
& \begin{array}{l}
(6-\lambda)[1((\lambda+2)(\lambda+1)+1)-0(-3(\lambda+1)-2)+0(3+2(\lambda)=0 \\
(6-\lambda)\left[\lambda^{2}+2 \lambda+\lambda+2+1-0+0\right]=0 \Rightarrow(6-\lambda)\left[\lambda^{2}+3 \lambda+3\right]: \\
(6-\lambda)[4 \lambda+z]=0
\end{array} \\
& \begin{array}{l}
(6-\lambda)[1((\lambda+2)(\lambda+1)+1)-0(-3(\lambda+1)-2)+0(3+2(\lambda)=0 \\
(6-\lambda)\left[\lambda^{2}+2 \lambda+\lambda+2+1-0+0\right]=0 \Rightarrow(6-\lambda)\left[\lambda^{2}+3 \lambda+3\right]: \\
(6-\lambda)[4 \lambda+z]=0
\end{array} \\
& {\left[24 \lambda-4 \lambda^{2}+18-3\right\rangle=0} \\
& \begin{array}{l}
(6-\lambda)[1((\lambda+2)(\lambda+1)+1)-0(-3(\lambda+1)-2)+0(3+2(\lambda)=0 \\
(6-\lambda)\left[\lambda^{2}+2 \lambda+\lambda+2+1-0+0\right]=0 \Rightarrow(6-\lambda)\left[\lambda^{2}+3 \lambda+3\right]: \\
(6-\lambda)[4 \lambda+z]=0
\end{array} \\
& \text { 21才光 } 18=4 \lambda^{2} \\
& \left.4 x^{2}-21 x-18=0\right]
\end{aligned}
$$

\therefore Here $\lambda=6$ is the only real value and other fualue． ore complex．when $\lambda=6$ ，the given system becomes

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
-5 & 2 & 3 \\
3 & -5 & 2 \\
2 & 3 & -5
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& \therefore e(A)^{\prime}=2 ; n=3 \\
& n-r=3-2=1 \text { I.I.S } \\
& \left.\left.\sim\left[\begin{array}{ccc}
-5 & 2 & 3 \\
0 & -19 & 19 \\
0 & 19 & -19
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow 5 R_{2}+3 R_{1} \\
R_{3} \rightarrow 5 R_{3}+2 R_{1}
\end{array}\right] \begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& -5 x+2 y+3 z=0 ;-5 x+2 k+3 k=0 \\
& -19 y+19 z=0 \\
& +5 x=15 k \\
& z=k \\
& \therefore \quad\left[\begin{array}{l}
x=k \\
y \\
y
\end{array}\right]=\left[\begin{array}{l}
k \\
k \\
k \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] k \\
& -19 y+19 k=0 \\
& -19 y=-19 k \\
& y=k ;
\end{aligned}
$$

\Rightarrow graces -
Solutions of Linear systems Direct fuethods

1) Gaussian Elimination fyethod

This method of solving system of n linear
30, equations in in: unknowns consists of eliminating the co-efficients in such a way that the system reduces to upper triangular system which may be solved by saclcward substitution.
9. Solve the Equations; $2 x+y+z=10 ; 3 x+y+3 z=18 ; x+u y+9 z$. $=16$; by using Gauss elimination method.
solus Given Equations

$$
\begin{align*}
& 2 x+y+z=10 \\
& 3 x+2 y+3 z=18 \\
& x+4 y+9 z=16
\end{align*}
$$

system (1) can be expressed in the form $A X=B$
where

$$
A=\left[\begin{array}{lll}
2 & 1 & 1 \\
3 & 2 & 3 \\
1 & 4 & 9
\end{array}\right] ; X=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] ; B=\left[\begin{array}{l}
10 \\
18 \\
16
\end{array}\right]
$$

Argumented matrix

$$
\begin{aligned}
{[A B] } & =\left[\begin{array}{cccc}
2 & 1 & 1 & 10 \\
3 & 2 & 3 & 18 \\
1 & 4 & 9 & 16
\end{array}\right] \\
& \left.\approx\left[\begin{array}{cccc}
2 & 1 & 10 \\
0 & 1 & 3 & 6 \\
0 & 7 & 17 & 22
\end{array}\right] \begin{array}{lll}
& 1 & R_{2} \rightarrow 2 R_{2}-3 R_{1} \\
R_{3} \rightarrow & 2 R_{3}-R_{1} \\
& \sim\left[\begin{array}{cccc}
2 & 1 & 10 \\
0 & 1 & 3 & 6 \\
0 & 0 & -4 & -20
\end{array}\right] R_{3} \rightarrow R_{3}-7 R_{2}
\end{array}\right]
\end{aligned}
$$

which is o upper triongulor matrix

$$
\begin{array}{rlrl}
2 x+y+z & =10 ; y+3 z=6 \\
-4 z & =-20 & \\
z & =5 & & 2 x-9+5=10 \\
y+3(5) & =6 ; & 2 x=14 \\
y & =6-15 ; & x=7 \\
y & =-9 &
\end{array}
$$

$$
x=7 ; y=-9 ; z=5
$$

2. Solve $3 x+y-z=3 ; \quad{ }^{\prime} x-8 y+z=-5 ; \quad x-2 y+9 z=8$ by Gaussian elimination method Given Equations

$$
\left.\begin{array}{l}
3 x+y-z=3 \\
2 x-8 y+z=-5 \\
x-2 y+9 z=8
\end{array}\right] \rightarrow \text { (1) }
$$

system (1) can be expressed in the form $A X=B$

$$
A=\left[\begin{array}{ccc}
3 & 1 & -1 \\
2 & -8 & 1 \\
1 & -2 & 9
\end{array}\right] ; x=\left[\begin{array}{l}
z \\
y \\
z
\end{array}\right] B=\left[\begin{array}{c}
3 \\
-5 \\
8
\end{array}\right]
$$

Argumented matrix

$$
\begin{aligned}
{\left[A B_{1}\right] } & =\left[\begin{array}{cccc}
3 & 1 & -1 & 3 \\
2 & -8 & 1 & -5 \\
1 & -2 & 9 & 8
\end{array}\right] \\
& \sim\left[\begin{array}{cccc}
3 & 1 & -1 & 3 \\
0 & -26 & 5 & -21 \\
0 & -7 & 28 & 21
\end{array} R_{2} \rightarrow R_{3} \rightarrow 3 R_{2}-2 R_{1}\right. \\
& \sim\left[\begin{array}{cccc}
3 & 1 & -1 & 3 \\
0 & -264 & 5 & -21 \\
0 & -1 & 4 & 3
\end{array}\right] R_{3} \rightarrow \frac{R_{3}}{7}
\end{aligned}
$$

$$
\sim\left[\begin{array}{cccc}
3 & 1 & -1 & 3 \\
0 & -26 & 5 & -21 \\
0 & 0 & 99 & 99
\end{array}\right] R_{3} \rightarrow 26 R_{3} R_{2}
$$

which is a upper triangular matrix

$$
\begin{aligned}
3 x+y-z & =3 \\
-26 y+5 z & =-21 \\
94 z & =99 \\
z & =1 \\
-26 y+5 & =-21 \\
-26 y & =-21-5 \\
-26 y & =-26 \\
y & =1
\end{aligned}
$$

3. Solve $2 x+y+z=10 ; 3 x+2 y+3 z=18 ; x+4 y+9 z=16$

$$
\therefore \quad x=1, \quad y=1,2=1
$$ by using Gauss- Jordan-Method (only row operations)

solus) Given Equations

$$
\begin{align*}
& 2 x+y+z=10 \\
& 3 x+2 y+3 z=18
\end{align*}
$$

$x+4 y+9 z=16$ expressed in the form $A x=B$
system (1) can be expressed.

$$
\left.\left.\begin{array}{rl}
{[A-A}
\end{array}\right]=\left[\begin{array}{cccc}
2 & 1 & 1 & 10 \\
3 & 2 & 3 & 18 \\
1 & 4 & 9 & 16
\end{array}\right] \begin{array}{cccc}
2 & 1 & 1 & 10 \\
0 & 1 & 3 & 6 \\
0 & 7 & 17 & 22
\end{array}\right] \begin{array}{lll}
R_{2} \rightarrow & 2 R_{2}-3 R_{1} \\
& \sim 2 R_{3}-R_{1} \\
& \sim\left[\begin{array}{cccc}
2 & 1 & 1 & 10 \\
0 & 1 & 3 & 6 \\
0 & 0 & -4 & -20
\end{array}\right] R_{3} \rightarrow R_{3}-7 R_{2}
\end{array}
$$

where

$$
\begin{aligned}
& \sim\left[\begin{array}{cccc}
2 & 1 & 1 & 10 \\
0 & 1 & 3 & 6 \\
0 & 0 & 1 & 5
\end{array}\right] \quad R_{3} \rightarrow R_{3} /-4 \\
& \sim\left[\begin{array}{cccc}
2 & 1 & 0 & 5 \\
0 & 1 & 0 & -9 \\
0 & 0 & 1 & 5
\end{array}\right] \begin{array}{l}
R_{1} \rightarrow R_{1}-R_{3} \\
R_{2}
\end{array} \rightarrow R_{2}-3 R_{3} \\
& \sim\left[\begin{array}{cccc}
2 & 0 & 0 & 14 \\
0 & 1 & 0 & -9 \\
0 & 1 & 1 & 5
\end{array}\right] \begin{array}{l}
R_{1} \rightarrow R_{1}-R_{2} \\
\end{array} \\
& \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 7 \\
0 & 1 & 0 & -9 \\
0 & 0 & 1 & 5
\end{array}\right] \quad R_{1} \rightarrow R_{1} / 2 \\
& x=7 ; y=-9 ; z=5
\end{aligned}
$$

HeW.
4. Solve the equations $x+y+z=6 ; 3 x+3 y+u z=20$; $2 x+y+3 z=13$; using partial pivoting Goussion elimination fucthod.
solus Given Equations

$$
\begin{aligned}
& x+y+z=6 \\
& 3 x+3 y+4 z=20 \\
& 2 x+y+3 z=13
\end{aligned}
$$

system (1) can be expressed in the form
$A x=B$ where

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
3 & 3 & 4 \\
2 & 1 & 3
\end{array}\right] ; x=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] ; B=\left[\begin{array}{c}
6 \\
20 \\
13
\end{array}\right]
$$

Argumented matrix

$$
[A B]=\left[\begin{array}{cccc}
1 & 1 & 1 & 6 \\
3 & 3 & 4 & 20 \\
2 & 1 & 3 & 13
\end{array}\right]
$$

$$
\begin{aligned}
& \sim\left[\begin{array}{cccc}
1 & 1 & 1 & 6 \\
0 & 0 & 1 & 2 \\
0 & -1 & 1 & 1
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow R_{2}-3 R_{1} \\
R_{3} \rightarrow R_{2}-2 R_{1}
\end{array} \\
& \sim\left[\begin{array}{cccc}
1 & 1 & 6 \\
0 & -1 & 1 & 1 \\
0 & 0 & 1 & 2
\end{array}\right] \xrightarrow{R_{2} \leftrightarrow R_{3}}
\end{aligned}
$$

which is a upper triangular matrix
5. Solve the Equations $3 x+y+2 z=3 ; 2 x-3 y-z=-3$; $x+2 y+z=4$ by using Gauss elimination method solus Given Equations

$$
\begin{aligned}
& 3 x+y+2 z=3 \\
& 2 x-3 y-z=-3 \\
& x+2 y+z=4
\end{aligned} \longrightarrow
$$

system (1) can be expressed, in the form $A x=B$.

$$
\begin{aligned}
& \text { ystem (1) can be expressed } \\
& \text { where } A=\left[\begin{array}{ccc}
3 & 1 & 5 \\
2 & -3 & -1 \\
1 & 2 & 1
\end{array}\right] ; x=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] ; B=\left[\begin{array}{c}
3 \\
-3 \\
4
\end{array}\right]
\end{aligned}
$$

Argumented matrix

$$
\begin{aligned}
& {[A B]=\left[\begin{array}{cccc}
3 & 1 & 2 & 3 \\
2 & -3 & -1 & -3 \\
1 & 2 & 1 & 4
\end{array}\right]} \\
& \sim\left[\begin{array}{cccc}
1 & 2 & 1 & 4 \\
2 & -3 & -1 & -3 \\
3 & 1 & 2 & \frac{9}{3}
\end{array}\right] \stackrel{1}{R_{7}} \longleftrightarrow R_{3} \\
& \sim\left[\begin{array}{cccc}
1 & 2 & 1 & 4 \\
0 & -7 & -3 & -11 \\
0 & -5 & -1 & -9
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow R_{2}-2 R_{1} \\
R_{3} \rightarrow R_{3}-3 R_{1}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& x+y+z=6 \\
& x+1+2=6 \\
& x=3 \\
& -x y+z=1 ; \quad-y+2=1 \\
& \begin{aligned}
z=2 \quad-y & =-1 ; \\
y & =1 ;
\end{aligned} \\
& \therefore x=3 ; y=1 ; z=2
\end{aligned}
$$

$$
\sim\left[\begin{array}{rrrr}
1 & 2 & 1 & 4 \\
0 & -7 & -3 & -11 \\
0 & 0 & 8 & -8
\end{array}\right] R_{3} \rightarrow 7 R_{3}-5 P_{2}
$$

which is on upper triangular matrix

$$
\begin{array}{rrrl}
x+2(2)-1=4 ; & x+2 y+z=4 & & \\
x+1-1=4 & -7 y-3 z=-11 ; & -7 y-3(-1)=-11 \\
x=1 & 8 z=-8, & -7 y+3=-11 \\
\therefore x=1 ; y=2 ; & z=-1 & -7 y=-14 \\
\therefore & y=2
\end{array}
$$

6. Solve the equations $10 x+y+z=12 ; 9 x+10 y+z=13$ and $x+y+5 z=7$ by Gauss - Jordan Method
Solus) Given Equations

$$
\left.\begin{array}{c}
10 x+y+z=12 \\
9 x+10 y+z=13 \\
x+y+5 z=7
\end{array}\right] \rightarrow 0
$$

system (1) can be expressed in the form

$$
\begin{aligned}
& A x=B \\
& A=\left[\begin{array}{ccc}
10 & 1 & 1 \\
2 & 10 & 1 \\
1 & 1 & 5
\end{array}\right] ; x^{2}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] ; \quad B=\left[\begin{array}{c}
12 \\
13 \\
7
\end{array}\right] \\
& \text { Argumented matrix } \\
& {[A B]=\left[\begin{array}{cccc}
10 & 1 & 1 & 12 \\
2 & 10 & 1 & 13 \\
1 & 1 & 5 & 7
\end{array}\right]} \\
& {\left[\sim\left[\begin{array}{cccc}
10 & 1 & 1 & 12 \\
0 & 49 & 4 & 53 \\
0 & 9 & 49 & 58
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow 5 R_{2}-R_{1} \\
R_{3} \rightarrow 10 R_{3}-R_{1}
\end{array}\right.} \\
& \left.\sim\left[\begin{array}{cccc}
10 & 1 & 1 & 1 \\
0 & 49 & 4 & 5 B \\
0 & 0 & 2365 & 2365
\end{array}\right] \begin{array}{lll}
R_{3} \rightarrow 10 R_{3}-R_{1} \\
R_{3} & 1
\end{array}\right] 49 R_{3}-9 R_{2} \\
& \left.\sim\left[\begin{array}{llll}
20 & 1 & 1 & 1 \\
3 & & 1
\end{array}\right] \quad R_{2} \ngtr F\right]
\end{aligned}
$$

$$
\begin{aligned}
& \sim\left[\begin{array}{cccc}
2 & 10 & 1 & 13 \\
10 & 1 & 1 & 12
\end{array}\right] R_{1} \leftrightarrow R_{3} \\
& \sim\left[\begin{array}{cccc}
1 & 1 & 5 & 7 \\
0 & 8 & -9 & -1 \\
0 & -9 & -49 & -58
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow R_{2}-2 R_{1} \\
R_{3} \rightarrow R_{3}-10 R_{1}
\end{array} \\
& \sim\left[\begin{array}{cccc}
1 & -8 & -44 & -51 \\
0 & 8 & -9 & -1 \\
0 & -9 & -49 & -58
\end{array}\right] R_{1} \rightarrow R_{1}+R_{3} \\
& \sim\left[\begin{array}{cccc}
-1 & +8 & +44 & +51 \\
0 & 8 & -9 & -1 \\
0 & 9 & 49 & 58
\end{array}\right] \begin{array}{l}
R_{1} \rightarrow \frac{R_{1}}{-1} \\
R_{3} \rightarrow \frac{R_{3}}{-1}
\end{array} \\
& \sim\left[\begin{array}{cccc}
-1 & 8 & 44 & 51 \\
0 & 8 & -9 & -1 \\
0 & 0 & 473 & 473
\end{array}\right], R_{3} \rightarrow \delta R_{3}-9 R_{2} \\
& \sim\left[\begin{array}{cccc}
-1 & 8 & 4 u i & 5 R^{2} \\
0 & 8 & 9 & -1 \\
0 & 0 & 1 & 1
\end{array}\right] R_{3} \rightarrow \frac{R_{3}}{473} \\
& \sim\left[\begin{array}{cccc}
-1 & 0 & 53 & 52 \\
0 & 8 & 0 & 8 \\
0 & 0 & 1 & 1
\end{array}\right] \begin{array}{l}
\left.\left.R_{1} \rightarrow \begin{array}{l}
173 \\
R_{2}
\end{array}\right] \begin{array}{l}
R_{1}-R_{2} \\
R_{2}+9 R_{3}
\end{array}\right]
\end{array} \\
& \sim\left[\begin{array}{ccccc}
-1 & 0 & 53 & 52 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1
\end{array}\right] R_{2} \rightarrow \frac{R_{2}}{8} \\
& \sim\left[\begin{array}{cccc}
+1 & 0 & 0 & +1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right] \quad R_{1} \rightarrow \frac{R_{1}-53 R_{3}}{-1} . \\
& \therefore x=1 ; y=1 ; z=1
\end{aligned}
$$

7. Solve the Equations

$$
10 x_{1}+x_{2}+x_{3}: 12: x_{1}+10 x_{2}-x_{3}=10 \text { and } x_{1}-2 x_{2}+10 x_{3}
$$ $=9$ by Gauss - Jordan method

Dote
$15 / 12 / 18$
2. Eigen values Eigen vectors
\& Quadratic
Let $A=\left[a_{i j}\right]_{m \times n}$ matrix a, non-zero vector x is Said to be choracteristics vector of A if. there exist a scalar λ such that $A x=\lambda x$. If $A x=\lambda x$, $(x \neq 0)$ we say that x is eigen vector or characteristic vector of A corresponding to the Eigen values or characteristic vectors or values $\lambda(a)$
Note: A - λi is called characteristic matrix of A.also determinant $A-\lambda I$ is a polynomial in λ are degree ' n '

* $|A-\lambda I|=0$ is called the characteristic equation of A. This will be polynomial equation in λ of degree ' n '. Here ' A ' is $n \times n$ matrix (square matrix) io 2 is the $n \times n$ unit matrix' ie, should be sotisfied

1. Find the eigen values and eigen vectors of the following matrix

$$
\text { i) }\left[\begin{array}{ccc}
5 & -2 & 0 \\
-2 & 6 & 2 \\
0 & 2 & 7
\end{array}\right]
$$

lu) Given matrix

$$
A=\left[\begin{array}{ccc}
5 & -2 & 0 \\
-2 & 6 & 2 \\
0 & 2 & 7
\end{array}\right]
$$

The characteristic matrix of A is

$$
A-\lambda I=\left[\begin{array}{ccc}
5 & -2 & 0 \\
-2 & 6 & 2 \\
0 & 2 & 7
\end{array}\right]-\lambda\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
5-\lambda & -2 & 0 \\
-2 & 6-\lambda & -2 \\
0 & 2 & 7-\lambda
\end{array}\right]
$$

The characteristic Equation of A is

$$
|A-\lambda I|=0
$$

$$
|A-\lambda I|=0
$$

$$
\begin{gathered}
0 \quad 2 \quad 7-\lambda \mid \\
(5-\lambda)[(6-\lambda)(7-\lambda)-u]+2[-2 \cdot(7-\lambda)-0]+0=0 \\
\left.0+\lambda^{2}-u\right)-28+u \lambda=0
\end{gathered}
$$

$$
(5-\lambda)[(6-\lambda)(7-\lambda 1)-28+u \lambda=0
$$

$$
\begin{aligned}
& (5-\lambda)(42-13 \lambda+1 \\
& (5-\lambda)\left(\lambda^{2}-13 \lambda+38\right)-2 \delta+4 \lambda=0
\end{aligned}
$$

$$
\begin{aligned}
& (5-\lambda)\left(\lambda^{2}-13 \lambda+38\right)-2 \delta+4 \lambda=0 \\
& 5 \lambda^{2}-65 \lambda+190-\lambda^{3}+13 \lambda^{2}-38 \lambda-28+4 \lambda=0
\end{aligned}
$$

$$
-\lambda^{3}+18 \lambda^{2}-99 \lambda+162=0
$$

$$
\begin{aligned}
& -\lambda^{3}+18 \lambda \\
& \lambda^{3}-18 \lambda^{2}+99 \lambda-162=0 \\
& 162+297-16
\end{aligned}
$$

$$
\begin{aligned}
& \lambda^{3}-18 \lambda^{2}+99 \lambda-162=0 \\
& \lambda=3 \Rightarrow 27-162+297-162=0
\end{aligned}
$$

$$
3\left|\begin{array}{cccc}
3 & \Rightarrow & -18 & 99 \\
0 & 3 & -162 \\
1 & -15 & 54 & 162
\end{array}\right|
$$

$$
\left(\lambda^{2}-15 \lambda+5 u\right)(\lambda-3)=0
$$

$$
\begin{array}{l|l}
\lambda-3=0 & \lambda^{2}-15 \lambda+54=0 \\
& (\lambda-6)(\lambda-9)=0
\end{array}
$$

$$
\begin{array}{r}
-3=0 \\
\lambda=3, \\
(\lambda-6)(\lambda-9)=0 \\
\lambda=6,9
\end{array}
$$

$\therefore \lambda=6,9,3$, are the characteristics of A

$$
\lambda=6,9
$$

or ε; gen values or roots of A
case (I)

$$
\frac{\operatorname{case}(I)}{\text { If } \lambda=3 \text { then }(A-\lambda I) x=0}
$$

$$
\begin{aligned}
& 3 \text { then }(A-\lambda I) x=0 \\
& {\left[\begin{array}{ccc}
2 & -2 & 0 \\
-2 & 3 & 2 \\
0 & 2 & 4
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right]=}
\end{aligned}
$$

$$
\begin{aligned}
& \sim\left[\begin{array}{ccc}
2 & -2 & 0 \\
0 & 1 & 2 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow R_{2}+R_{1} \\
R_{3}
\end{array} 2=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& \left.\sim\left[\begin{array}{ccc}
2 & -2 & 0 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] . \begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& 2 x-2 y=0 ; \quad l(A)=2 ; n=3 \\
& 0-y+2 z=0 \\
& \text { let } z=k \\
& n-r=3-2=1 \quad l \cdot I-S \\
& y+2 k=0 \\
& y=-2 k \\
& 2 x-2(-2 k)=0 \\
& 2 x=-4^{2} k \\
& x=-2 k \\
& \therefore\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-2 k \\
-2 k \\
k
\end{array}\right]=k\left[\begin{array}{c}
-2 \\
-2 \\
1
\end{array}\right]
\end{aligned}
$$

Case -II
of $\lambda=6$ then $(A-\lambda I) X=0$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
-1 & -2 & 0 \\
-2 & 0 & 2 \\
0 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& \sim\left[\begin{array}{ccc}
-1 & -2 & 0 \\
0 & 4 & 2 \\
0 & 2 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right] \begin{array}{lll}
R_{2} & \rightarrow & R_{2}-2 R_{1} \\
R_{3} & \rightarrow & R_{3}-A R_{1}
\end{array} \\
& \sim\left[\begin{array}{ccc}
-1 & -2 & 0 \\
0 & 2 & 1 \\
0 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] R_{2} \rightarrow \frac{R_{2}^{\prime}}{2}=\left[\sqrt{1} \begin{array}{c}
0 \\
0 \\
0
\end{array}\right] \\
& \sim\left[\begin{array}{ccc}
-1 & -2 & 0 \\
0 & 2 & 10 \\
0 & 0 & 00 \\
y
\end{array}\right]=\begin{array}{l}
x \\
y
\end{array} R_{2}=x\left(I R-R_{3}=\left[\begin{array}{c}
0 \\
0 \\
0
\end{array}\right]\right.
\end{aligned}
$$

$$
\begin{array}{cc}
n-r=3-2=1 & L \cdot I \cdot S \\
-x-2 y=0 ; & 2 y+z=0 ; z=k \\
-x+2\left(\frac{k}{x}\right)=0 & 2 y+k=0 \\
7 x=-2 k & y=-\frac{k}{2} \\
x=k \\
\therefore\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
-k / 2 \\
k
\end{array}\right]=k\left[\begin{array}{c}
1 \\
-1 / 2 \\
1
\end{array}\right]
\end{array}
$$

$\operatorname{cosc}-$ III
If $\lambda=9$ then $(A-\lambda I) x=0$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
-4 & -2 & 0 \\
-2 & -3 & 2 \\
0 & 2 & -2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& \sim\left[\begin{array}{rrr}
2 & 1 & 0 \\
-2 & -3 & 2 \\
0 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \begin{array}{l}
R_{1} \rightarrow \frac{R_{1}}{R_{3}} \rightarrow \frac{R_{3}}{2}
\end{array}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& \sim\left[\begin{array}{ccc}
2 & 1 & 0 \\
0 & -2 & 2 \\
0 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow R_{2}+R_{1} \\
R
\end{array} \\
& \sim\left[\begin{array}{ccc}
2 & 1 & 0 \\
0 & -1 & 1 \\
0 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\left[R_{2} \rightarrow \frac{1}{2}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right. \\
& \sim\left[\begin{array}{ccc}
2 & 1 & 0 \\
0 & -1 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\left[\begin{array}{ll}
0 & \\
R_{3} \rightarrow R_{3}+R_{2}
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& C(A)=2: n=3 \\
& 2 x+y=0 \quad ; \quad z=k \\
& -y+z=0 \quad 2 x+x=0 \\
& -y+k=0 \\
& 2 x=-k \\
& -y=-k \\
& y=k \quad x=\frac{-k}{2}
\end{aligned}
$$

$$
\therefore\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-k / 2 \\
k \\
k
\end{array}\right]=k\left[\begin{array}{c}
-1 / 2 \\
1 \\
1
\end{array}\right]
$$

ii) $A=\left[\begin{array}{ccc}1 & 2 & -1 \\ 0 & 2 & 2 \\ 0 & 0 & -2\end{array}\right]$
iii) $\left[\begin{array}{rrr}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]$

Solus Given matrix

$$
A=\left[\begin{array}{ccc}
1 & 2 & -1 \\
0 & 2 & 2 \\
0 & 0 & -2
\end{array}\right]
$$

The characteristic matrix of A is

$$
\begin{aligned}
A-\lambda I & =\left[\begin{array}{ccc}
1 & 2 & -1 \\
0 & 2 & 2 \\
0 & 0 & -2
\end{array}\right]-\lambda\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1-\lambda & 2 & -1 \\
0 & 2-\lambda & 2 \\
0 & 0 & -2-\lambda
\end{array}\right]
\end{aligned}
$$

The characteristic equation of A is

$$
\begin{gathered}
|A-\lambda I|=0 \\
\left.\left|\begin{array}{ccc}
1-\lambda & 2 & -1 \\
0 & 2-\lambda & 2 \\
0 & 0 & -12+\lambda)
\end{array}\right|=0 \right\rvert\, \begin{array}{c}
0 \\
(1-\lambda)
\end{array}[(2-\lambda)(2+\lambda)-0] \\
(1-\lambda)[-(4-2 \lambda+2 \lambda-\lambda]-1(0-0)]=0 \\
(1-\lambda)\left[2 \lambda \lambda \cdot-4+\lambda^{2}\right]=0 \\
\left(\lambda^{2}-u\right)(1-\lambda)=0 \\
\lambda^{2}=u \quad 1=\lambda \\
\lambda= \pm 2 \\
\lambda=1,2,-2
\end{gathered}
$$

$\therefore \lambda=1,2,-2$ ore the Eigen roots of A
are (I)
If $\lambda=1$ then $(A-\lambda I) x=0$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
0 & 2 & -1 \\
0 & 1 & 2 \\
0 & 0 & -3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
0 & 2 & -1 \\
0 & 0 & 5 \\
0 & 0 & -3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] R_{2} \rightarrow 2 R_{2}-R_{1}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
0 & 2 & -1 \\
0 & 0 & 5 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] R_{3} \rightarrow 5 R_{3}+3 R_{2}=\left[\begin{array}{l}
x \\
y \\
0
\end{array}\right]} \\
& C(A)=2 ; n=3 \\
& n-r=3-2=1 \quad i \cdot S \\
& 2 y-z=0 ; 5 z=0, x=k \\
& 2 y-0=0 \\
& 2 y=0 \\
& y=0 \\
& z]=\left[\begin{array}{l}
k \\
0 \\
0
\end{array}\right]=k\left[\begin{array}{l}
x \\
0
\end{array}\right]
\end{aligned}
$$

case $($ ii) If $\lambda=2$ then $(A-\lambda I) x=0$

$$
\begin{gathered}
{\left[\begin{array}{ccc}
-1 & 2 & -1 \\
0 & 0 & 2 \\
0 & 0 & -4
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
\sim\left[\begin{array}{ccc}
-1 & 2 & -1 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] R_{3} \rightarrow 2 R_{3}+4 R_{2}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
C(A)=2 ; n=3 \\
n-r=3-2=1 \quad \text { l.I.S }
\end{gathered}
$$

$$
\begin{gathered}
-x+2 y-z=0 \\
2 z=0 \quad ; x=k \\
z=0 \quad 0 \\
-k+2 y-0=0 \\
2 y=k \\
y=\frac{k}{2} \\
\therefore\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
k \\
k / 2 \\
0
\end{array}\right]=k\left[\begin{array}{c}
1 \\
1 / 2 \\
0
\end{array}\right]
\end{gathered}
$$

Case- III
If $\lambda=-2$ then $(A-\lambda I) x=0$

$$
\begin{aligned}
& =\left[\begin{array}{ccc}
3 & 2 & -1 \\
0 & 4 & 2 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& \sim\left[\begin{array}{ccc}
3 & 2 & -1 \\
0 & 2 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] R_{2} \rightarrow \frac{n_{2}}{2}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& C(A)=2 ; n=3 \quad 3 x+2 y-z=0 \quad z=k ; \quad 3 x+2\left(\frac{-k}{x}\right)-k=0 \\
& n-r=3-2 \\
& 2 y+z=0 \\
& 2 y+k=0 \\
& 2 y=+k \\
& y=-\frac{k}{2} \\
& \therefore\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
\frac{2}{3} k \\
-k / 2 \\
k
\end{array}\right]=k\left[\begin{array}{c}
2 / 3 \\
-1 / 2 \\
1
\end{array}\right]
\end{aligned}
$$

3. Given matrix

$$
A=\left[\begin{array}{ccc}
-2 & 2 & -3 \\
2 & 1 & -6 \\
-1 & -2 & 0
\end{array}\right]
$$

The characteristics matrix of A is

$$
\begin{aligned}
A-\lambda I & =\left[\begin{array}{ccc}
-2 & 2 & -3 \\
2 & 1 & -6 \\
-1 & -2 & 0
\end{array}\right]-\lambda\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-2-\lambda & 2 & -3 \\
2-\lambda & 1-\lambda & -6 \\
-1 & -2 & -\lambda
\end{array}\right]
\end{aligned}
$$

The characteristic equation of A is

$$
\begin{aligned}
& |A-\lambda I|=0 \\
& \left|\begin{array}{ccc}
-2-\lambda & 2 & -3 \\
2 & 1-\lambda & -6 \\
-1 & -2 & -\lambda
\end{array}\right|=01 . \\
& -(2+\lambda)[(-\lambda)(1-\lambda)-12]-2(-2 \lambda-6)-3(-4+(1-\lambda))=0 \\
& -(2+\lambda)\left[-\lambda+\lambda^{2}-12\right]+4 \lambda+12-3(-4+1-\lambda)=0 \\
& -(2+\lambda)\left[-\lambda+\lambda^{2}-12\right]+4 \lambda+12-3(-\lambda-3)=0 \\
& -(2+\lambda)\left[\lambda^{2} \lambda^{2}-12\right]+4 \lambda+12+3 \lambda+9=0 \\
& -\left(2 \lambda^{2}-2 \lambda-24+\lambda^{3}-\lambda^{2}-12 \lambda\right)+7 \lambda+21=0 \\
& -2 \lambda^{2}+2 \lambda+24-\lambda^{3}+\lambda^{2}+12 \lambda+7 \lambda+21=0 \\
& -\lambda^{3}-\lambda^{2}+21 \lambda^{2}+45=0 \\
& \lambda^{3}+\lambda^{2}-21 \lambda-45=0 \\
& \left.\lambda=-3+\begin{array}{cccc}
1 & -x & -21 & -45 \\
0 & -3 & 6 & 45
\end{array} \right\rvert\, \\
& (\lambda+3)\left(\lambda^{2}-2 \lambda-15\right)=0 \\
& (\lambda+3)\left(\lambda^{2}-5 \lambda+3 \lambda-15\right)=0 \\
& \text { - }(\lambda+13)(\lambda(\lambda-5)+3(\lambda-5))=0 \\
& (\lambda+3)(\lambda+3)(\lambda-5)=0
\end{aligned}
$$

Eigen roots of A
case I
$4 f$
case (II)
If $\lambda=5$ then $(A-\dot{\lambda} I) x=0$

$$
\lambda=5\left[\begin{array}{rrr}
-7 & 2 & -3 \\
2 & -4 & -6 \\
-1 & -2 & -5
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

9त1)

$$
\sim\left[\begin{array}{ccc}
+1 & +2 & +5 \\
2 & -4 & -6 \\
-7 & 2 & -3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \begin{aligned}
& R_{3} \rightarrow R_{3} \\
& R_{1} \leftrightarrow R_{3}
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

$$
\sim\left[\begin{array}{ccc}
+1 & 2 & 5 \\
0 & -8 & -76 \\
0 & 16 & 32
\end{array}\right] \begin{array}{ccc}
R_{2} \rightarrow & R_{2}-2 R_{1} \\
R_{3} \rightarrow
\end{array}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

is is dow smonilu

$$
\begin{aligned}
& \lambda=-3 \quad(A-\lambda T) X=0 \\
& -\left[\begin{array}{ccc}
1 & 2 & -3 \\
2 & 4 & -6 \\
-1 & -2 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& C(A)=1 ; n=3 \\
& n-r=3-1=2 \text { L.I.S } \\
& x+2 y-3 z=0 \\
& y=k, \cdots ; z=k_{2} \\
& x+2 k_{1}-3 k_{2}=0 \\
& x=3 k_{2}-2 k_{1} \\
& \therefore\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
3 k_{2}-2 k_{1} \\
k_{1} \\
k_{2}
\end{array}\right]=\left[\begin{array}{c}
-2 k_{1} \\
-k_{1} \\
0
\end{array}\right]+\left[\begin{array}{c}
3 k_{2} \\
0 \\
k_{2}
\end{array}\right] \\
& =k_{1}\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right]+k_{2}\left[\begin{array}{c}
3 \\
0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \sim\left[\begin{array}{ccc}
1 & 2 & 5 \\
0 & 1 & 2 \\
0 & 1 & 2
\end{array}\right] \begin{array}{l}
P_{2} \rightarrow \frac{R_{2}}{-8} \\
R_{3} \rightarrow \frac{p_{3}}{16}
\end{array}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& \sim\left[\begin{array}{lll}
1 & 2 & 5 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
0
\end{array}\right] R_{3} \rightarrow R_{3}-R_{2}=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& ((A)=2 ; n=3 \\
& n-r=3-2=1 \cdot L \cdot I \cdot S \\
& x+2 y+5 z=0 ; \quad x+2(-2 k)+5(k)=0 \\
& y+2 z=0 \quad x-4 k+5 k=0 \\
& z=k \quad x=-k \\
& y+2 k=0 ; y=-2 k \\
& \therefore\left[\begin{array}{l}
z \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-k \\
-2 k \\
k
\end{array}\right]=k\left[\begin{array}{c}
-1 \\
-2 \\
0
\end{array}\right] .
\end{aligned}
$$

pole
(1)|2018 Properties of Eigen values:

1. The sum of the Eigen values of a square matrix is equal to its trace and product of the Eigen values is equals to its determinant
2. If ' λ ' is an Egger value of A corresponding to the Eigen vector "x. "then λ^{n} is eigen value of $-A$ " corresponding to the Eigen vector " x "
3. A square matrix " A " and its transpose A ". hove the some eigen values.
4. If A and B are $n \times n$ matrix and if A is invertible then $A^{-1} B$ and $B A^{-1}$ have some Eigen values.
5. If $\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}$ are the Eigen values of matrix A
6. If $k \lambda_{1}=k \lambda_{2} \ldots k \lambda_{n}$ are the Eigen values of
7. motrin $k A$ off " λ " k "
$\lambda t k$ is an eigen value of the matrix AtLI
8. If " λ " is an Eigen value of a non-singular matrix of A corresponding to the eigen vector "x". then λ^{-1} is an eigen value of A^{-1} and the $\operatorname{coses}^{-\gamma}$ ponding Eigen values itself.
HeW
9. Find the characteristic roots \& characteristic vector of the following matrices.

$$
\begin{aligned}
& \text { of the following matrices } \\
& 1 \cdot\left[\begin{array}{ccc}
6 & -2 & 2 \\
-2 & 3 & -1 \\
2 & -1 & 3
\end{array}\right] \quad 2 \cdot\left[\begin{array}{ccc}
8 & -6 & 2 \\
-6 & 7 & -4 \\
2 & -4 & 3
\end{array}\right] 3 \cdot\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] \\
& 4 \cdot\left[\begin{array}{ccc}
3 & -1 & 1 \\
-1 & 5 & -1 \\
1 & -1 & 3
\end{array}\right] \quad 5 \cdot\left[\begin{array}{ccc}
1 & -6 & -4 \\
0 & 4 & 2 \\
0 & -6 & -3
\end{array}\right] .
\end{aligned}
$$

Solus 5: Given matrix

$$
A=\left[\begin{array}{ccc}
1 & -6 & -4 \\
0 & 4 & 2 \\
0 & -6 & -3
\end{array}\right]
$$

"The characteristic matrix of of is

$$
A-\lambda I=\left[\begin{array}{ccc}
1 & -6 & -4 \\
0 & 4 & 2 \\
0 & -6 & -3
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
1-\lambda & -6-\lambda & -4 \\
0 & 4-\lambda & 2 \\
0 & -6 & -3-\lambda
\end{array}\right]
$$

The charoctersstic Equation of A is

$$
\text { a rio }\left|\begin{array}{ccc}
1-\lambda-\lambda I \mid=0 \\
0 & 4-\lambda & -4 \\
0 & -6 & -(3+\lambda)
\end{array}\right|=0
$$

$$
(1-\lambda)
$$

$$
\begin{gathered}
\lambda)[(u-\lambda)(3+\lambda)+12]+6(0)-u(0)=0 \\
(1-\lambda)\left[-\left(12-3 \lambda+u \lambda-\lambda^{2}\right)+12\right]=0 \\
(1-\lambda)\left[\lambda^{2}-\lambda-12+12\right]=0 \\
\left(\lambda^{2}-\lambda\right)(1-\lambda)=0 \\
\lambda^{2}-\lambda-\lambda^{3}+\lambda^{2}=0 \\
\lambda^{3}-2 \lambda^{2}+\lambda=0 \\
1-2 \\
1-1 \\
0 \quad 1 \\
1 \quad-1 \\
\left(\lambda^{2}-\lambda\right)(\lambda-1)=0 \\
\lambda=1 ; \lambda^{2}=x
\end{gathered}
$$

$\therefore \lambda=1,1,0$ ore the Eigen values of A
$\frac{\operatorname{mon}(\theta)}{\text { If }} \lambda=1$ then $(A-\lambda I) x=0$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
0 & -6 & -4 \\
0 & 3 & -2 \\
0 & -6 & -4
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
0 & -6 & -4 \\
0 & 3 & 2 \\
0 & 0 & 0
\end{array}\right] R_{3} \rightarrow R_{3}-R_{1}\left[\begin{array}{l}
x \\
y^{\prime} \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \text {, }} \\
& {[C(A)=2 ; n=3} \\
& n-r=3-2 . L \cdot I-S \\
& -6 y-u z=0 \quad z=k ;-6\left(-\frac{2}{3} k\right)-41 \\
& 3 y+2 z=0 ; \\
& 3 y+2 k=0 \\
& 3 y=-2 k \\
& {\left[\begin{array}{ccc}
1 \\
0 & {\left[\begin{array}{c}
3 y=-2 k \\
0
\end{array}\right.} & \left.\begin{array}{c}
3 \\
0
\end{array}\right] \\
0 & 0 & 0
\end{array}\right] R_{2} \rightarrow 2 R_{2}+R_{1}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right.}
\end{aligned}
$$

$$
\begin{gathered}
(A)=1 ; n=3 \\
n-r=3-1=2, l \cdot I \cdot S \\
-6 y-u z=0 ; x=k_{1}, z=k_{2} \\
-6 y-u k_{2}=0 \\
-6 y=y^{3} k_{2} \\
y=-\frac{2}{3} k_{2} \\
\therefore\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
k_{1} \\
-\frac{2}{3} k_{2} \\
k_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+k_{2}\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]
\end{gathered}
$$

$\cos (\rho \rho)$
If $\lambda=0$ then $(A-\lambda I) X=0$

$$
\begin{gathered}
{\left[\begin{array}{ccc}
1 & -6 & -4 \\
0 & 4 & 2 \\
0 & -6 & -3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
{\left[\begin{array}{ccc}
1 & -6 & -4 \\
0 & 4 & 2 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array} R_{3} \rightarrow 4 R_{3}+6 R_{2}\left[\begin{array}{c}
0 \\
0 \\
0
\end{array}\right]\right.} \\
e(A)=2 \quad \therefore n=3 \\
n-r=3-2=1 \quad l \cdot I \cdot S \\
x=6 y-4 z=0 \quad ; z=k \\
u y+2 z=0 \\
u y+2 k=0 \\
4 y=-2 k \quad x-6\left(\frac{-1}{2} k\right)-4 k=0 \\
y=-\frac{1}{2} k \quad x+3 k-4 k=0 \\
\therefore\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
k=1 / 2 k \\
k
\end{array}\right]=k\left[\begin{array}{c}
1 \\
-1 / 2 \\
1
\end{array}\right]
\end{gathered}
$$

Given matrix

$$
A=\left[\begin{array}{ccc}
3 & -1 & 1 \\
-1 & 5 & -1 \\
1 & -9 & 3
\end{array}\right]
$$

The characteristic matrix of A is

$$
\begin{aligned}
A-\lambda I & =\left[\begin{array}{ccc}
3 & -1 & 1 \\
-1 & 5 & -1 \\
1 & -1 & 3
\end{array}\right]-\lambda\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
3-\lambda & -1 & 1 \\
-1 & 5-\lambda & -1 \\
1 & -1 & 3-\lambda
\end{array}\right]
\end{aligned}
$$

the characteristic equation of A is

$$
\begin{aligned}
& |A-\lambda I|=0 \\
& \left|\begin{array}{ccc}
3-\lambda & -1 & 1 \\
-1 & 5-\lambda & -1 \\
1 & -1 & 3-\lambda
\end{array}\right|=0 \\
& (3-\lambda)[(5-\lambda)(3-\lambda)-1]+1(-3+\lambda+1)+1(1-5+\lambda)=0 \\
& (3-\lambda)\left[15-3 \lambda-5 \lambda+\lambda^{2}-1\right]-3+\lambda+\lambda+\lambda+5+\lambda=0 \\
& 45-9 \lambda-15 \lambda+3 \lambda^{2}-3-15 \lambda+3 \lambda^{2}+5 \lambda^{2}-\lambda^{3}+\lambda+2 \\
& -3+\lambda-5+\lambda=0 \\
& -\lambda^{3}+6 \lambda^{2}+5 \lambda^{2}-36 \lambda+36=0 \\
& \lambda^{3}-11 \lambda^{2}+36 \lambda-36=0 \\
& \therefore \quad \begin{array}{lllll}
\\
\lambda & \lambda=3 & 3 & -11 & 36 \\
0 & -36 \\
0 & -24 & 36 \\
1 & -8 & +12 & 0
\end{array} \\
& (\lambda-3)\left(\lambda^{2}-8 \lambda+12\right)=0 \\
& (\lambda-3)(\lambda-2)(\lambda-6)=0^{1} \\
& \lambda=2,3,6
\end{aligned}
$$

$\operatorname{cose}(i)$
If $\lambda=2$ then $(A-\lambda I) \%=0$

$$
\begin{gathered}
{\left[\begin{array}{ccc}
1 & -1 & 1 \\
-1 & 3 & -1 \\
1 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
\sim\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \begin{array}{l}
R_{2} \\
R_{3} \rightarrow R_{2}+R_{1}
\end{array}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
C(A)=2 ; n=3 \\
n-r=3-2=1 ; L \cdot I-S \\
y-y+z=0 ; z=k \\
2 y=0 \quad x-0+k=0 \\
y=0 \quad x=-k \\
\therefore\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-k \\
0 \\
k
\end{array}\right]=k\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
\end{gathered}
$$

cose(i9)
If $\lambda=3$ then $(A-\lambda I) x=0$.

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
0 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
0 & -1 & 1 \\
-1 & 0 & 1 \\
1 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow R_{2}+2 R_{1} \\
R_{3} \rightarrow R_{3}-R_{1}
\end{array}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
0 & -1 & 1 \\
-1 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] R_{3} \rightarrow R_{3}+R_{2}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
0 & -1 & 1 \\
-1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] R_{2} \rightarrow R_{2}-R_{1}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}
\end{aligned}
$$

(abe (ipo)
If $\lambda=6$ then $(A-\lambda I) x=0$

$$
\begin{aligned}
& \text { ff } \lambda=\left[\begin{array}{ccc}
-3 & -1 & 1 \\
-1 & -1 & -1 \\
1 & -1 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{l}
y \\
y \\
z
\end{array}\right]\left[\begin{array}{ccc}
-3 & -1 & 1 \\
0 & -2 & -4 \\
0 & -4 & -2
\end{array}\right] R_{3} \rightarrow 3 R_{3}+R_{1}} \\
& \left.\left[\begin{array}{ccc}
-3 & -1 & 1 \\
0 & -2 & -4 \\
0 & 0 & 14
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

$$
C(A)=3 ; n=3
$$

$$
-3 x-y+z=0
$$

$$
-2 y-u z=0
$$

$$
1 \cup z=0
$$

$$
-2 y=0
$$

$$
x=0
$$

1. Given matrix
$A=\left[\begin{array}{ccc}6 & -2 & 2 \\ & 3 & -1\end{array}\right] \quad A \div \lambda=\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]-\lambda\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

$$
A=\left[\begin{array}{ccc}
6 & -2 & 2 \\
-2 & 3 & -1 \\
2 & -1 & 3
\end{array}\right]
$$

$$
\begin{aligned}
& -y+z=0 \\
& -x+y=0 ; z=k \\
& \therefore C(A)=2 i n=3 . \\
& n-r=3-2=1 \cdot L \cdot I \cdot S \\
& -y+k=0 ; \quad-x+k=0 \\
& -y=-k \\
& -x=-k \\
& y=k \\
& x=k \\
& \therefore\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
k \\
k \\
k
\end{array}\right]=k\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] .
\end{aligned}
$$

The characteristic motrin of A is

$$
A-\lambda T=\left[\begin{array}{ccc}
6-\lambda & -2 & 2 \\
-2 & 3-\lambda & -1 \\
2 & -1 & 3-\lambda
\end{array}\right]
$$

The chorocteristic equation of A is

$$
\begin{gathered}
|A-\lambda I|=0 \\
\left|\begin{array}{ccc}
6-\lambda & -2 & 2 \\
-2 & 3-\lambda & -1 \\
2 & -1 & 3-\lambda
\end{array}\right|=0 \\
(6-\lambda)\left[\begin{array}{c}
(3-\lambda)(3-\lambda)-1]+2[(-2)(3-\lambda)+2]+2[2-6+21) \\
(6-\lambda)\left[9-3 \lambda-3 \lambda+\lambda^{2}-1\right]+2[-6+2 \lambda+2]+2[-4+2 \lambda]=0 \\
54-18 \lambda-18 \lambda+6 \lambda^{2}-6-9 \lambda+3 \lambda^{2}+3 \lambda^{2}-\lambda^{3}+\lambda-12+4 \lambda+4 \\
-8+4 \lambda=0 \\
-\lambda^{3}+12 \lambda^{2}-36 \lambda+32=0 \\
\lambda^{3}-12 \lambda^{2}+36 \lambda-32=0 \\
\lambda=2 \\
211+12 \\
0 \\
1
\end{array} \quad-10-20\right. \\
16 \\
\left(\lambda^{2}-10 \lambda+16\right)(\lambda-2)=0 \\
\left(\lambda^{2}-2 \lambda-8 \lambda+16\right)(\lambda-2)=0 \\
(\lambda-2)[(\lambda-2) \lambda-8(\lambda-2)]=0 \\
(\lambda-2)(\lambda-8)(\lambda-2)=0 \\
\lambda=2,2,8
\end{gathered}
$$

$\therefore \lambda=2,2,8$ are the Eigen values
$\operatorname{cose}(i)$

* If $\lambda=2$ then $(A-\lambda I)^{\prime} \dot{x}=0$

$$
\left.\begin{array}{l}
{\left[\begin{array}{ccc}
4 & -2 & 2 \\
-2 & 1 & -1 \\
2 & -1 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
{\left[\begin{array}{ccc}
4 & -2 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right] R_{2} \rightarrow 2 R_{2}+R_{1} \rightarrow 2 R_{3}-R_{1}} \\
e(A)=1 ; n=3 \\
n-r=3-1=2 ;\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
4 x-2 y+2 z=0 \\
y=k_{1} ; z=k_{2} \\
4 x-2 k_{1}+2 k_{2}=0 \\
4 x=2 k_{1}-2 k_{2} \\
x=\frac{k_{1}-k_{2}}{2} \\
k_{1} / 2-k_{2} / 2 \\
k_{1} \\
k_{2}
\end{array}\right]=k_{1}\left[\begin{array}{c}
1 / 2 \\
1 \\
0
\end{array}\right]+k_{2}\left[\begin{array}{c}
-1 / 2 \\
0 \\
1
\end{array}\right] .\left[\begin{array}{l}
x \\
z
\end{array}\right]=\left[\begin{array}{c}
k_{2}
\end{array}\right]
$$

case (ii)
If $\lambda=8$ then $(A-\lambda I) x=0$

$$
\begin{aligned}
& \lambda=8 \text { then }[A-\lambda 1 \\
& {\left[\begin{array}{ccc}
-2 & -2 & 2 \\
-2 & -5 & -1 \\
2 & -1 & -5
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
-2 & -2 & 2 \\
0 & -3 & -3 \\
0 & -3 & -3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow R_{2}-R_{1} \\
R_{3} \rightarrow R_{3}+R_{1}
\end{array}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
-2 & -1 & 1 \\
0 & -3 & -3 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z_{1}
\end{array}\right] \begin{array}{l}
R_{1} \rightarrow \frac{R_{j}}{2}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{array},}
\end{aligned}
$$

$$
\begin{aligned}
& \cdots x-y+z=0 \\
& -3 y-3 z=0 ; z=k ;-x-(-k)+k=0 \\
& -x+2 k=0 \\
& -3 y-3 k=0 \\
& -3 y=3 k \\
& -x=-2 k \\
& x=k \\
& \therefore\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
k \\
-k \\
k
\end{array}\right]=k\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
\end{aligned}
$$

2. Given matrix

$$
A=\left[\begin{array}{ccc}
8 & -6 & 2 \\
-6 & 7 & -4 \\
2 & -4 & 3
\end{array}\right]
$$

The characteristic matrix of A is

$$
\begin{aligned}
A-\lambda I & =\left[\begin{array}{ccc}
8 & -6 & 2 \\
-6 & 7 & -4 \\
2 & -4 & 3
\end{array}\right]-\lambda\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
8-\lambda & -6 & 2 \\
-6 & 7-\lambda & -4 \\
2 & -4 & 3-\lambda
\end{array}\right]
\end{aligned}
$$

The characteristic equation of A is

$$
\begin{gathered}
\left|\begin{array}{ccc}
8-\lambda & -6 & 2 \\
-6 & 7-\lambda & -4 \\
2 & -4 & 3-\lambda
\end{array}\right|=0 \\
(8-\lambda)\left[\begin{array}{cc}
(7-\lambda)(3-\lambda)-16
\end{array}\right]+6(-6(3-\lambda)+8)-2(24-2(7-1) \\
\left.(8-\lambda)\left[21-3 \lambda-7 \lambda+\lambda^{2}-1,6\right]+6[-18+6 \lambda+8]+2[24-14+2)^{2}\right] \\
(8-\lambda)\left[\lambda^{2}-10 \lambda+5\right]+6[6 \lambda-10]+2[2 \lambda+10]=0 \\
8 \lambda^{2}-80 \lambda+40-\lambda^{3}+10 \lambda^{2}-5 \lambda+36 \lambda-60+4 \lambda+70^{6=0} \\
\therefore \quad-\lambda^{3}+18 \lambda^{2}-458 \lambda=40=0 .
\end{gathered}
$$

$$
\begin{gathered}
\lambda^{3}-18 \lambda^{2}+458 \lambda+40=0 \\
\lambda\left(\lambda^{2}-18 \lambda+45\right)=0 \\
\lambda=0 ;\left(\lambda^{2}-15 \lambda-3 \lambda+45\right)=0 \\
{[\lambda(\lambda-15)-3(\lambda+15)] \lambda=0} \\
\lambda(\lambda-3)(\lambda-15)=0 \\
\lambda=0,3,15
\end{gathered}
$$

$\therefore \lambda=0,3,15$ are the eigen values $\operatorname{cose}(i)$
If $\lambda=0$ then $(A-\lambda I) X=0^{-}$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
8 & -6 & 2 \\
-6 & 7 & -4 \\
2 & -4 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& \sim\left[\begin{array}{ccc}
8 & -6 & 2 \\
0 & 20 & -20 \\
0 & -20 & 20
\end{array}\right]\left[\begin{array}{l}
x \\
y^{\prime} \\
z
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow 8 R_{2}+6 R_{1} \\
R_{3} \rightarrow 8 R_{3}-2 R_{1}
\end{array}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& \left.\sim\left[\begin{array}{ccc}
8 & -6 & 2 \\
0 & 20 & -20 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& f(A)=2 ; n=3 \\
& n-r=3-2=1 ; L \cdot I \cdot S \\
& 8 x-6 y+2 z=0 \\
& 20 y-20 z=0 \\
& 20 y=20 z \\
& y=z ; y=k \\
& 8 x-6 k+2 k=0 \\
& 8 x-4 k=0 ; \quad 8 x=4 k ; x=\frac{k}{2} ; \\
& \therefore\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=r\left[\begin{array}{c}
k / 2 \\
k \\
k
\end{array}\right]=k\left[\begin{array}{c}
1 / 2 \\
1 \\
1
\end{array}\right]
\end{aligned}
$$

If $\lambda=3$ then $(A-\lambda I) x=0$
$\operatorname{cosc}(i p)$

$$
n-r=3-2=1 ; \text { L.I.S }
$$

$$
\begin{array}{ll}
5 x-6 y+2 z_{1}=0 ; & z=k \\
24+k
\end{array}
$$

$$
\begin{aligned}
2 y+z=0 ; & 2 y+k=0 \\
2 y & =-k
\end{aligned}
$$

$$
5 x-6\left(\frac{-k}{2}\right)+2 k=0
$$

$$
5 x+3 k+2 k=0
$$

$$
5 x=-5 k
$$

$$
\therefore\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-k \\
-k / 2 \\
k
\end{array}\right]=k\left[\begin{array}{c}
-1 \\
-1 / 2 \\
1
\end{array}\right]
$$

$$
2 y=-k
$$

$$
y=\frac{-k}{2}
$$

$$
x=-k
$$

$\operatorname{cose}(9 i i)$.
If $\lambda=15$ then $(A-\lambda I \cdot) x=0$

$$
\left[\begin{array}{ccc}
-7 & -6 & 2 \\
-6 & -8 & -4 \\
2 & -4 & -12
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
5 & -6 & 2 \\
-6 & 4 & -4 \\
2 & -4 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& \sim\left[\begin{array}{ccc}
5 & -6 & 2 \\
0 & 2 & 1 \\
0 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow \frac{R_{2}}{-8} \\
R_{3} \rightarrow \frac{R_{3}}{-4}
\end{array}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& \sim\left[\begin{array}{ccc}
5 & -6 & 2 \\
0 & 2 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \tilde{R}_{3} \rightarrow R_{3}-R_{1}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& \rho(A)=2 ; n=3
\end{aligned}
$$

$$
\begin{aligned}
& \sim\left[\begin{array}{rrr}
-7 & -6 & 2 \\
3 & 4 & 2 \\
-1 & 2 & 6
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow \frac{R_{2}}{-2} \\
R_{3} \rightarrow \frac{R_{3}}{-2}
\end{array}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& \sim\left[\begin{array}{ccc}
-7 & -6 & 2 \\
0 & 10 & 20 \\
0 & 20 & 30
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \begin{array}{l}
-2 \\
R_{2} \rightarrow 7 R_{2}+3 R_{1} \\
R_{3} \rightarrow 7 R_{3}-R_{1}
\end{array}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& \sim\left[\begin{array}{ccc}
-7 & -6 & 2 \\
0 & 1 & 2 \\
0 & 2 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \begin{array}{l}
\begin{array}{l}
R_{2} \rightarrow \begin{array}{l}
R_{2} / 10 \\
R_{3} \rightarrow R_{3} / 10
\end{array}
\end{array}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{array} \\
& \sim\left[\begin{array}{ccc}
-7 & -6 & 2 \\
0 & 1 & 2 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \quad \therefore \quad R_{3}-2 R_{2}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& C(A)=3 ; n=3 \\
& \begin{aligned}
-7 x-6 y+2 z 0 ; \quad y+2 z=0 ;-z & =0 \\
z & =0
\end{aligned} \\
& x=0 \quad y=0 \\
& \therefore\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

3. Given matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

The characteristic matrix of A is

$$
\begin{aligned}
A-\lambda I & =\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1-\lambda & 1 & 1 \\
1 & 1-\lambda & 1 \\
1 & 1 & 1
\end{array}\right]
\end{aligned}
$$

The choracticristic equation of $A x$ is.

$$
\begin{gathered}
\left|\begin{array}{ccc}
|A-\lambda I|=0 \\
1-\lambda & 1 & 1 \\
1 & 1-\lambda & 1 \\
1 & 1 & 1-\lambda
\end{array}\right|=0 \\
(1-\lambda)\left[\begin{array}{c}
(1-\lambda)(1-\lambda)-1]-1[x-\lambda-\lambda]+i[x-1+\lambda]=0 \\
(1-\lambda)\left[y-\lambda-\lambda+\lambda^{2}-\lambda\right]-1[-\lambda]+1=0 \\
(1-\lambda)\left[-2 \lambda+\lambda^{2}\right]+\lambda+\lambda=0 \\
-2 \lambda+\lambda^{2}+2 \lambda^{2}-\lambda^{3}+\lambda+x=0 \\
-\lambda^{3}+3 \lambda^{2}=0 \\
-\lambda\left(\lambda^{2}+3 \lambda\right)=0 \\
\lambda=0 \lambda^{2}=+3 \lambda \\
\lambda=+3
\end{array}\right. \\
\lambda=0,0,3
\end{gathered}
$$

Case (i)
If $\lambda=0$ then $(A-\lambda I) x=0$

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow R_{2}-R_{1} \\
R_{3} \rightarrow R_{3}-R_{j}
\end{array}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& (1 A)=1 n=3 \\
& n-r=3-1=2 ; l_{1} I \cdot S \\
& x+y+z=0 ; x_{1}=k_{1} 0 z=k_{2} \\
& x+k+k_{2}=0 \\
& x=-\left(k_{1}+k_{2}\right) \\
& \therefore\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-\left(k_{1}+k_{2}\right) \\
k_{1} \\
k_{2}
\end{array}\right]=k_{1}\left[\begin{array}{c}
-1 \\
0
\end{array}\right]+k_{2}\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

Cayley-Hamilton theorem and Quadratic forms:-

Init - 2

HACALEY - HAMILTON THEOREM
HAMILTON THOR EM
Every square matrix satisfies its characteristic
HACALEY - HAMILTON
equation
1.7f $A=\left[\begin{array}{ccc}2 & 1 & 2 \\ 5 & 3 & 3 \\ -1 & 0 & -2\end{array}\right] \begin{gathered}\text { verify haley Hamill } \\ \text { and hence find, } A^{-1}\end{gathered}$
shay Given matrix.

$$
A=\left[\begin{array}{ccc}
2 & & 2 \\
5 & 3 & 3 \\
-1 & 0 & -2
\end{array}\right]
$$

The choractcristic equation motrin of A

$$
\begin{aligned}
A-\lambda I & =\left[\begin{array}{ccc}
2 & 1 & 2 \\
5 & 3 & 3 \\
-1 & 0 & -2
\end{array}\right]-\left[\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right] \\
& =\left[\begin{array}{ccc}
2-\lambda & 1 & 2 \\
5 & 3-\lambda & 3 \\
-1 & 0 & -2-\lambda
\end{array}\right]
\end{aligned}
$$

The characteristic equation of A is $|A-\lambda I|=0$

$$
\begin{gathered}
{\left[\begin{array}{ccc}
2-\lambda & 1 & 2 \\
5 & 3-\lambda & 3 \\
-1 & 0 & -2-\lambda
\end{array}\right]=0} \\
(2-\lambda)[(3-\lambda)(-2-\lambda)-0]-1[5(-2-\lambda)+3]+2[0+1(3-\lambda)]=0 \\
(2-\lambda)\left[-6-3 \lambda+2 \lambda+\lambda^{2}\right)-(-10-5 \lambda+3)+6-2 \lambda=0 \\
(2-\lambda)\left(-6-3 \lambda+2 \lambda+\lambda^{2}\right)-(-10-5 \lambda+13)+6-2 \lambda=0 \\
(2-\lambda)\left(\lambda^{2}-\lambda-6\right)+5 \lambda+7+6-2 \lambda=0 \\
2 \lambda^{2}-2 \lambda-12-\lambda^{3}+\lambda^{2}+6 \lambda+3 \lambda+13=0 \\
-\lambda^{3}+3 \lambda^{2}+7 \lambda+1=0 \\
\lambda^{3}-3 \lambda^{2}-7 \lambda-1=0
\end{gathered}
$$

By caller Hamilton theorem

$$
\begin{aligned}
A^{3}-3 A^{2}-7 A-I & =0 \\
A^{2}=A-A & =\left[\begin{array}{ccc}
2 & 1 & 2 \\
5 & 3 & 3 \\
-1 & 0 & -2
\end{array}\right]\left[\begin{array}{ccc}
2 & 1 & 2 \\
5 & 13 & 3 \\
11 & 0 & -2
\end{array}\right] \\
& =\left[\begin{array}{ccc}
4+5-2 & 2+3+0 & 4+3-4 \\
10+15-3 & 5+9+0 & 10+9-6 \\
-2+0+2 & -1+000 & -2+0+4
\end{array}\right] \\
& =\left[\begin{array}{ccc}
7 & 5 & 3
\end{array}\right]
\end{aligned}
$$

novice Lie

$$
\begin{aligned}
& A^{3}=A^{2} A=\left[\begin{array}{ccc}
7 & 5 & 13 \\
22 & 14 & 13 \\
0 & -1 & 2
\end{array}\right]\left[\begin{array}{ccc}
2 & 1 & 2 \\
5 & 3 & 3 \\
-1 & 0 & -2
\end{array}\right] \\
& =\left[\begin{array}{ccc}
14+25-3 & 7+15+0 & 14+15-6 \\
44+70-13 & 22+42+0 & 44+42-26 \\
0-5-2 & 0-3+0 & 0-3-4
\end{array}\right] \begin{array}{cc}
\frac{5208}{25} 104 \\
\frac{1258}{301248}
\end{array} \\
& =\left[\begin{array}{ccc}
36 & 22 & 23 \\
101 & 64 & 60 \\
-7 & -3 & -7
\end{array}\right] \\
& A^{3}-3 A^{2}-7 A-I=\left[\begin{array}{ccc}
36 & 22 & 23 \\
101 & 64 & 60 \\
-7 & -3 & -17
\end{array}\right],\left[\begin{array}{ccc}
21115 & 9 \\
66 & 42 & 39 \\
0 & -3 & 6
\end{array}\right]-\left[\begin{array}{ccc}
14 & 7 & 14 \\
35 & 21 & 21 \\
-7 & 0 & -14
\end{array}\right] \\
& =i\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

- coley Homilton theorem is satisfied

Now

$$
\begin{gathered}
A^{3}-3 A^{2}-7 A-I=0 \\
I=A^{3}-3 A^{2}-7 A \\
\text { with }
\end{gathered}
$$

multiplying with A^{-1} o.b.s

$$
\left.\begin{array}{rl}
A^{-1} & =A^{2}-3 A-7 A \\
A^{-1} & =\left[\begin{array}{ccc}
7 & 5 & 3 \\
22 & 14 & 13 \\
0 & -1 & 0
\end{array}\right]-\left\{\begin{array}{cc}
6 & 3 \\
15 & 9 \\
-3 & 0
\end{array} 9^{1}\right. \\
\hline
\end{array}\right]-\left[\begin{array}{ccc}
7 & 0 & 1 \\
0 & 7 & 0 \\
0 & 0 & 7
\end{array}\right]
$$

2. Find the inverse of the following motrixes by using $C-H-T$ and ilo verify $C \cdot H-T$
i) $\left[\begin{array}{ccc}1 & -1 & 0 \\ 0 & 1 & 1 \\ 2 & 1 & 2\end{array}\right]^{\circ}$
ii) $\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & -1\end{array}\right]$
iii) $\left[\begin{array}{rrr}3 & 1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 5\end{array}\right]$
iv) $\left[\begin{array}{ccc}7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1\end{array}\right]$
vi) $\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6\end{array}\right]$

Solus i): Given matrix

$$
A=\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 1 \\
2 & 1 & 2
\end{array}\right]
$$

characteristic motrix of A is.

$$
\begin{aligned}
A-\lambda I & =\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 1 \\
2 & 1 & 2
\end{array}\right]-\left[\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & 0 \\
10 & 0 & \lambda
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1-\lambda & -1 & 0 \\
0 & 1-\lambda & 1 \\
2 & 1 & 2-\lambda
\end{array}\right]
\end{aligned}
$$

The characteristic equation of A is

$$
\begin{array}{r}
\left|\begin{array}{ccc}
A-\lambda I)=0 \\
0 & 1-\lambda & 0 \\
1 \\
2 & 1 & 2-\lambda
\end{array}\right|=0 \\
(1-\lambda)[(1-\lambda)(2-\lambda)-1]+1[0-2]+0=0 \\
(1-\lambda)\left[2-2 \lambda-\lambda+\lambda^{2}-1\right]-2=0 \\
(1-\lambda)\left[\lambda^{2}-3 \lambda+1\right]-2=0 \\
\lambda^{2}-3 \lambda+1-\lambda^{3}+3 \lambda^{2}=\lambda-2=0 \\
-\lambda^{3}+u \lambda^{2}-u \lambda-1=0 \\
\lambda^{3}-4 \lambda^{2}+u \lambda+1=0
\end{array}
$$

By calcy hamilton theorem

$$
\begin{aligned}
& A^{3}-u A^{2}+u A+I=0 \\
& A^{2}=A \cdot A=\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 1 \\
2 & 1 & 2
\end{array}\right]\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 1 & 1 \\
2 & 1 & 2
\end{array}\right]=\left[\begin{array}{c|cc}
11 & -2 & -1 \\
2 & -2 & 3 \\
6 & 1 & 5
\end{array}\right] \\
& {\left[=\left[\begin{array}{ccc}
1+0+0 & 0+6+2 & 2+0+4 \\
-1-1+0 & a+1+1 & -2+1+2 \\
0-1+0 & 0+1+2 & 0+1+4
\end{array}\right]\right.} \\
& =\left[\begin{array}{ccc}
1 & 2 & 6 \\
-2 & 2 & 1 \\
-1 & 3 & 5
\end{array}\right] \\
& A^{3}=A^{2} \cdot A=\left[\begin{array}{ccc}
1 & -2 & -1 \\
2 & 2 & 3 \\
6 & 1 & 5
\end{array}\right]\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 1 \\
2 & 1 & 2
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1-0-2 & -1-2-1 & 0-2-2 \\
2+0+6 & -2+2+3 & 0+2+6 \\
6+0+10 & -6+1+5 & 0+1+10
\end{array}\right]=\left[\begin{array}{ccc}
-1 & -4 & -4 \\
-8 & 3 & -8 \\
16 & 0 & 11
\end{array}\right] \\
& A A^{3} U A^{2}+4 A+I=\left[\begin{array}{ccc}
-1 & -4 & -4 \\
8 & 3 & 8 \\
16 & 0 & 11
\end{array}\right]-\left[\begin{array}{ccc}
-44 & -16 & -16 \\
32 & 12 & 32 \\
64 & 0 & 44
\end{array}\right]\left[\begin{array}{ccc}
4 & -8 & -24 \\
+8 & 8 & 12 \\
24 & 16 \\
42420
\end{array}\right] \\
& +\left[\begin{array}{ccc}
4 & -4 & 0 \\
1 & 1 & 4 \\
1 & 4 & 4
\end{array}\right]+\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

\therefore calcy hamilton theorem is satisfied

$$
\begin{aligned}
& I=-A^{3}+4 A^{2}-4 A A_{1}-(A-1), \\
& \text { multiplying with } A^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& A^{-1}=-A^{2}+4 A-4 I \\
& A=\left[\begin{array}{ccc}
1 & -2 & -1 \\
2 \\
6 & 1 & 5
\end{array}\right]+\left[\begin{array}{ccc}
4 & -4 & 0 \\
0 & 4 & 4 \\
8 & 4 & 8
\end{array}\right]+\left[\begin{array}{lll}
u & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 4
\end{array}\right] \\
&= {\left[\begin{array}{ccc}
-1+4-4 & 2-4-10 & 1+0+0 \\
-2+0-0 & -2+4-\mu & 3+4+0 \\
-6+8-0 & -1+4+0 & -5+8-4
\end{array}\right] } \\
&= {\left[\begin{array}{ccc}
-1 & -2 & 1 \\
-2 & -2 & 7 \\
2 & 3 & -1
\end{array}\right] }
\end{aligned}
$$

iv) Given matrix

$$
A=\left[\begin{array}{ccc}
7 & 2 & -2 \\
-6 & -1 & 2 \\
6 & 2 & -1
\end{array}\right]
$$

characteristic cauatran of A AS

$$
\text { AU } 4
$$

The characteristic equation of A is

$$
\begin{aligned}
& \begin{array}{c}
|A-\lambda I|=0 \\
{\left[\begin{array}{ccc}
7-\lambda & 2 & 2 \\
1-6 & -1-\lambda & 2 \\
6 & 2 & 0
\end{array}\right]=0}
\end{array} \\
& (7-\lambda)[(-1-\lambda)(-1-\lambda)-4]-2(-6(-1-\lambda)-12)-2(-12 \\
& -6(-1-\lambda))
\end{aligned}
$$

$$
\begin{aligned}
& \because-A-\lambda I=\left[\begin{array}{ccc}
7 & 2 & -2 \\
-61 & -1 & 2 \\
6 & 2 & -1
\end{array}\right] \stackrel{1}{-1}\left[\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & -0 & \lambda
\end{array}\right] \\
& =\left[\begin{array}{ccc}
7-\lambda & 211 & -2 \\
7^{6} & -1-\lambda & 2 \\
6+ & -1-\lambda
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& (7-\lambda)\left[+1+\lambda+\lambda+\lambda^{2}-4\right]-2(6+6 \lambda-12)-2(-12+6+6 \lambda) \\
& (7-\lambda)\left[\lambda^{2}+2 \lambda-3\right]-2(6 \lambda-6)-2(6 \lambda-6)=0 \\
& H^{\prime} \lambda^{2}+14 \lambda-21-\lambda^{3}-2 \lambda^{2}+3 \lambda-12 \lambda+2-12 \lambda+12=0+\frac{17}{7} \\
& -\lambda^{3}+5 \lambda^{2}+7 \lambda+3=0 \\
& \lambda^{3}-5 \lambda^{2}+7 \lambda-3=0
\end{aligned}
$$

By calcy Hamilton theorem

$$
\begin{aligned}
& A^{3}-5 A^{2}+7 A-3 I=0 \\
& A^{2}=\left[\begin{array}{ccc}
7 & 2 & -2 \\
-6 & -1 & 2 \\
6 & 2 & -1
\end{array}\right]\left[\begin{array}{ccc}
7 & 2 & -2 \\
-6 & -1 & 2 \\
6 & 2 & -1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
49-12-12 & 14-2-4 & -14+4+2 \\
-42+6+12 & -12+1+4 & 12-2-2 \\
42-12-6 & 12-2-2 & -12+4+1
\end{array}\right] . \\
& =\left[\begin{array}{ccc}
25 & 8 & -8 \\
-24 & -7 & 8 \\
24 & 8 & -7
\end{array}\right] \\
& A^{3}=A^{2} \cdot A=\left[\begin{array}{ccc}
25 & 8 & 18 \\
-24 & -7 & 18 \\
24 & 8 & -7
\end{array}\right]\left[\begin{array}{ccc}
7 & 2 & 2 \\
-6 & 2 & 2 \\
6 & 2 & -1
\end{array}\right] . \\
& =\left[\begin{array}{ccc}
175-48-48 & 50-8-16 & -50+16+168 \\
-108+42+48 & -48+7+16 & +48-14-8 \\
168-48-42 & 48-8-14 & -48+16+7
\end{array}\right. \\
& =\left[\begin{array}{ccc}
79 & 26 & -26 \\
-78 & -25 & 26 \\
78 & 26 & -25
\end{array}\right] \\
& 7 A=7\left[\begin{array}{ccc}
78 & 2 & -2 \\
-6 & -1 & 2 \\
6 & 2 & -1
\end{array}\right]=\left[\begin{array}{ccc}
498 & -14 & -14 \\
-42 & -14 & 14 \\
42 & 14 & -7
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left.\quad \begin{array}{ccc}
73-5 A^{2}+7 A \\
79 & 26 & -26 \\
-78 & -25 & 26 \\
78 & 26 & -25
\end{array}\right]-\left[\begin{array}{ccc}
125 & 40 & -40 \\
-120 & -135 & 40 \\
120 & 40 & -35
\end{array}\right]+\left[\begin{array}{ccc}
49 & 14 & -14 \\
-42 & -7 & 14 \\
42 & 14 & -7
\end{array}\right] \\
& = \\
& =\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & 0 & 3
\end{array}\right] \\
& =\left[\begin{array}{ccc}
79-125+49-3 & 26-40+14-0 & -26+40-14-0 \\
78-120+42+0 & 26-40+14-3 & 26-40+14+0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

\therefore caley Hamilton theorem is Anst rerified

$$
\begin{aligned}
& A^{3}-5 A^{2}+7 A-3 I=0 \\
& A^{3}-5 A^{2}+7 A=3 I C
\end{aligned}
$$

Multiplying. (1) with A_{-1}

$$
\begin{aligned}
& A^{2} \frac{1}{1} 5 A+7 I=3 A^{-1} \\
& 3 A^{-1}=\left[\begin{array}{ccc}
25 & 8 & -8 \\
\therefore & -24 & -7 \\
-2 & 8 & 8 \\
1 & -7
\end{array}\right]-\left[\begin{array}{ccc}
35^{2} & 10 & -10 \\
-30 & 25 & 10 \\
30 & 10 & -5
\end{array}\right]+\left[\begin{array}{lll}
7 & 0 & 0 \\
0 & 7 & 0 \\
0 & 0 & 7
\end{array}\right] \\
& 3 A^{-1}=\left[\begin{array}{ccc}
25-3577 & 8-10+0 & -8+10+0 \\
-24+30+0 & -7+5+7 & 8-10+0 \\
24-30+0 & -8-10+0 & -7+577
\end{array}\right] \\
& {\left[\begin{array}{cc}
n^{-1} \\
v 1 & \frac{1}{3} \\
1 & -3 \\
6 & 5 \\
-6 & -2 \\
2
\end{array}\right]}
\end{aligned}
$$

ip) Given matrix

$$
A=\left[\begin{array}{rrr}
3 & 1 & 1 \\
-1 & 5 & -1 \\
1 & -1 & 5
\end{array}\right]
$$

The chorocteristic matrix of A is

$$
\begin{aligned}
A-\lambda I & =\left[\begin{array}{ccc}
3 & 1 & 1 \\
-1 & 5 & -1 \\
1 & -1 & 5
\end{array}\right]-\left\{\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right] \\
& =\left[\begin{array}{ccc}
3-\lambda & 1 & 1 \\
-1 & 5-\lambda & -1 \\
1 & -1 & 5-\lambda
\end{array}\right]
\end{aligned}
$$

The characteristic equation of A is

$$
\begin{aligned}
& \mid A-\lambda I)=0 \\
& \left|\begin{array}{ccc}
3-\lambda & 1 & 1 \\
-1 & 5-\lambda & -1 \\
1 & -1 & 5-\lambda
\end{array}\right|=0 \\
& (3-\lambda)[(5-\lambda)(5-\lambda)-1]=1[-1(5-\lambda)+1]+1[1-(5-\lambda)]=0 \\
& (3-\lambda)[25-5 \lambda-5 \lambda+\lambda 21]-1[-5+\lambda+1]+[1-5+\lambda]=0 \\
& (3-\lambda)\left[25-10 \lambda+\lambda^{2}\right]-1[\lambda-4)+(\lambda-u)=0 \\
& \left(\lambda^{2}-10 \lambda+2 u\right)(3-\lambda)-(\lambda-u)+(\lambda-4)=0 \\
& \quad-\lambda^{3}+13 \lambda^{2}-5 u \lambda+72=0 \\
& \lambda^{3}-13 \lambda^{2}+5 u \lambda-72=0
\end{aligned}
$$

By calcy Hamilton theorem

$$
A^{2}=\left[\begin{array}{ccc}
3 & 1 & 1 \\
-1 & 5 & -1 \\
1 & -1 & 5
\end{array}\right]\left[\begin{array}{ccc}
3 & 1 & -1 \\
-1 & 5 & -1 \\
1 & -1 & 5
\end{array}\right]=\left[\begin{array}{ccc}
9-1+1 & 3+5-1 & 3-1+5 \\
-3-5-1 & -1+25+1 & -1-5-5 \\
3+1+5 & 1-5-5 & 1+1+25
\end{array}\right]
$$

$$
\begin{aligned}
& =\left[\begin{array}{ccc}
9 & 7 & 7 \\
-9 & 25 & -11 \\
9 & -9 & 27
\end{array}\right] \\
& A^{3}=A^{2} A=\left[\begin{array}{ccc}
9 & 7 & 7 \\
-9 & 25 & -11 \\
9 & -9 & 27
\end{array}\right] \cdot\left[\begin{array}{ccc}
3 & 1 & 1 \\
-1 & 5 & -1 \\
1 & -1 & 5
\end{array}\right] \\
& =\left[\begin{array}{lcc}
27-7+7 & 9+35-7 & 9-7+35 \\
-27-25-11 & -9+125+11 & -9-45-55 \\
27+9+27 & 9-45-27 & 9+9+135
\end{array}\right] \\
& =\left[\begin{array}{ccc}
27 & 37 & 37 \\
-63 & 127 & -89 \\
63 & -63 & 153
\end{array}\right] \\
& A^{3}-13 A^{2}+54 A-72 I \\
& \therefore\left[\begin{array}{ccc}
27 & 37 & 37 \\
-63 & 127 & -89 \\
63 & 2163 & 153
\end{array}\right]-\left[\begin{array}{ccc}
117 & 91 & 91 \\
-117 & 325 & -143 \\
117 & -117 & 351
\end{array}\right]+\left[\begin{array}{ccc}
162 & 54 & 54 \\
-54 & 270 & -54 \\
54 & -54 & 270
\end{array}\right] \\
& \because \because 1\left[\begin{array}{ccc}
72 & 0 & 0 \\
0 & 72 & 0 \\
0 & 01 & 72
\end{array}\right] \rightarrow \\
& =\left[\begin{array}{ccc}
27117+162-72 & 37-91+54-0 & -37-91+5440 \\
-63+117-54+0 & 12.7-325+270+92-89-325-54+0 \\
63-117+54+0 & -63+117-54+0
\end{array}\right. \\
& =\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] ; \cdots
\end{aligned}
$$

\therefore coley hamilton theoremiis verified

$$
\left[\begin{array}{rr}
13-1 & A^{3}-93+54 A-72 I \leq 0 \\
2+11 & A^{3}-13 A^{2}+54 A=72 I \\
A 213 A+5 U A=72 A^{2}
\end{array}\right.
$$

$$
\begin{aligned}
& 72 A^{-1}=\left[\begin{array}{ccc}
9 & 7 & 7 \\
-9 & 25 & -11 \\
9 & -9 & 27
\end{array}\right]-18\left[\begin{array}{ccc}
39 & 13 & 13 \\
-13 & 65 & -13 \\
13 & -1-3 & 65
\end{array}\right]+\left[\begin{array}{ccc}
54 & 0 \\
0 & 54 & 0 \\
0 & 0 & 54
\end{array}\right] \\
& 72 A^{-1}=\left[\begin{array}{ccc}
9-39+54 & 7-13+0 & 7-13+0 \\
-9+13+0 & 25-65+54 & -11+13+0 \\
9-13+0 & -9+13+0 & 27-65+54
\end{array}\right] \\
& \therefore=\frac{1}{72}\left[\begin{array}{ccc}
24 & -6 & -6 \\
4 & 14 & 2 \\
-4 & 4 & 16
\end{array}\right]
\end{aligned}
$$

ii) Given matrix

$$
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & -1 & 4 \\
\therefore & 1 & -1
\end{array}\right]
$$

- The characteristic matrix of A. IS

$$
\begin{aligned}
& \text { characteristic matrix of } 10 \\
& \text { A- } I=\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & -1 & 4 \\
3 & 1 & -1
\end{array}\right]-\left[\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & \lambda & \lambda \\
0 & 0 & \lambda
\end{array}\right] \\
& B=\left[\begin{array}{ccc}
1-\lambda & 2 & 3 \\
2 & -1-\lambda & 4 \\
3 & 1 & -1-\lambda
\end{array}\right]
\end{aligned}
$$

The characteristic equation of A is

$$
\begin{aligned}
& \mid A-\lambda I=0 \Rightarrow)\left|\begin{array}{ccc}
1-\lambda & 2 & 3 \\
2 & -1-\lambda & 4 \\
3 & 1 & -1-\lambda
\end{array}\right|=0 \\
& (1-\lambda)-[(-1-\lambda)(-1-\lambda)-4]-2[2(-1-\lambda)-12]+3(2-3(-1-\lambda)) \\
& (1-\lambda)[1+\lambda+\lambda+\lambda-u]-2[-2-2 \lambda-12]+3(2+3+3 \lambda)=0 \\
& (1-\lambda)\left[\lambda^{2}+2 \lambda-3\right]-2(-2 \lambda-14)+3(3 \lambda+5)=0 \\
& \lambda^{2}+2 \lambda-3-\lambda^{3}-2 \lambda^{2}+3 \lambda+4 \lambda+28+9 \lambda+5=0 \\
& -\lambda^{3}-\lambda^{2}+18 \lambda+30=0
\end{aligned}
$$

By caley Hamilton theorem

$$
\begin{aligned}
& A^{2}=\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & -1 & 4 \\
3 & 1 & -1
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & -1 & 4 \\
3 & -1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1+4+9 & 2-2+3 & -3+8-3 \\
2-2+12 & 4+1+4 & 6-4-4 \\
3+2-3 & 6-1-1 & 9-44+1
\end{array}\right]=\left[\begin{array}{ccc}
14 & 3 & 8 \\
12 & 9 & -2 \\
2 & 4 & 14
\end{array}\right] \\
& A^{3}=A^{2} A=\left[\begin{array}{ccc}
14 & 3 & 8 \\
12 & 9 & -2 \\
2 & 4 & 14
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & -1 & 4 \\
3 & 1 & -1
\end{array}\right]
\end{aligned}
$$

$$
=\left[\begin{array}{ccc}
14+6+24 & 28-3+8 & 42-12-8 \\
12+18-6 & 24-9-2 & 36+36+2 \\
2+8+42 & 4-4+14 & 6+16-14
\end{array}\right]=\left[\begin{array}{ccc}
44 & 33 & 22 \\
24 & 13 & 74 \\
52 & 14 & 1.8
\end{array}\right]
$$

$$
A^{3}+A^{2}-18 A-40 I
$$

$$
=\left[\begin{array}{ccc}
44 & -33 & 22 \\
24 & 13 & 74 \\
52 & 14 & 8
\end{array}\right]+\left[\begin{array}{ccc}
14 & 3 & 8 \\
12 & 9 & -2 \\
2 & 4 & 14
\end{array}\right]-\left[\begin{array}{ccc}
18 & 36 & 54 \\
36 & -18 & 72 \\
54 & 18 & -18
\end{array}\right]-\left[\begin{array}{lll}
4006 \\
0 & 400 \\
0041
\end{array}\right.
$$

$$
=\left[\begin{array}{ccc}
44+14-18+40 & 3373-36-0 & 22+8-5 u+0 \\
2 u+12-36-0 & 13+9+18-40 & 7 u-2-72-0 \\
52+2-54-0 & 14+4-18+0 & 8+14+18-40
\end{array}\right]
$$

$$
(k)=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

\therefore Since tally Hamilton theorem is verified

$$
\begin{aligned}
& 0 A^{3}+A^{2}-18 A-40 I=0 \\
&+\times A^{3}+A^{2}-18 A=40 I
\end{aligned}
$$

$$
\begin{aligned}
& A^{2}+A-18 I=\text { UNA -1 } \\
& 4 D A^{-1}=\left[\begin{array}{ccc}
14 & 3 & 8 \\
12 & 9 & -2 \\
2 & 4 & 14
\end{array}\right]+\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & -1 & 4 \\
3 & 1 & -1
\end{array}\right]-\left[\begin{array}{ccc}
18 & 0 & 0 \\
0 & 18 & 0 \\
0 & 0 & 18
\end{array}\right] \\
& A^{-1}=\left[\begin{array}{lll}
14+1-18 & 3+2-\theta & 8+3+0 \\
12+2-0 & 9-1-18 & -2+4+0 \\
2+3+0 & 4+1+0 & 14-1-18
\end{array}\right]=\frac{1}{40}\left[\begin{array}{ccc}
-3 & 5 & 11 \\
14 & -10 & 2 \\
5 & 5
\end{array}\right]
\end{aligned}
$$

v) Given matrix

$$
A=\left[\begin{array}{ccc}
8 & -8 & 2 \\
4 & -3 & -2 \\
3 & -4 & 1
\end{array}\right]
$$

The characteristic matrix of A is

$$
\begin{aligned}
A-\lambda I & =\left[\begin{array}{ccc}
8 & -8 & 2 \\
u & -3 & -2 \\
3 & -u & 1
\end{array}\right]-\left[\begin{array}{lll}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right] \\
& =\left[\begin{array}{ccc}
8-\lambda & -8 & 2 \\
4 & -3-\lambda & -2 \\
3 & -u & -\lambda
\end{array}\right]
\end{aligned}
$$

The characteristic equation of A is

$$
\begin{gathered}
|A-\lambda I|=0 \Rightarrow\left|\begin{array}{ccc}
8-\lambda & -8 & 2 \\
4 & -3-\lambda & -2 \\
3 & -4 & 1-\lambda
\end{array}\right|=0 \\
(8-\lambda)[(-3-\lambda)(1-\lambda)-8]+8[4(1-\lambda)+6]+2[-16-3(-3-\lambda)] \\
(8-\lambda)\left[-3-\lambda+3 \lambda+\lambda^{2}-8\right]+8[4-4 \lambda+6]+2(-16+9+3 \lambda)=0 \\
(8-\lambda)\left[\lambda^{2}+2 \lambda-11\right]+8(16-4 \lambda)+2(3 \lambda-7)=0 \\
8 \lambda^{2}+16 \lambda-88-\lambda^{3}-2 \lambda^{2}+11 \lambda+80-32 \lambda+6 \lambda-14=0 \\
-\lambda^{3}+6 \lambda^{2}+\lambda^{2}-22=0 \\
\lambda^{3}-6 \lambda^{2}-\lambda+22=0
\end{gathered}
$$

By caley Hamition theórefrom $=I .81-A 16 A$

$$
\begin{aligned}
& A^{2}=\left[\begin{array}{ccc}
A 3-6 A-A+22 I=0 \\
4 & -3 & -2 \\
3 & -4 & 1
\end{array}\right]\left[\begin{array}{ccc}
8 & -8 \\
4 & -3 & -2 \\
3 & -4 & 1
\end{array}\right] \\
&
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\begin{array}{ccc}
914-228-8+22 & 1596+388+8+0, & 206-204-2+0 \\
88-84-4+0 & 109+90+3+22 & 70-72+2+0 \\
69-66-3+0 & -100-76+4+6 & 69-90-1+22
\end{array}\right] \\
& =\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

coley Hamilton theorem is verified.

$$
\begin{aligned}
& A^{3}-6 A^{2}-A+92 I=0 \\
& 22 I=-A^{3}+6 A^{2}+A
\end{aligned}
$$

multiplying with A^{-1}

$$
\begin{aligned}
& 22 A^{-1}=-A^{2}+6 A+I \\
& 29 A^{-1}=\left[\begin{array}{ccc}
-38 & 48 & -34 \\
-14 & 15 & -12 \\
-11 & 16 & -15
\end{array}\right]+\left[\begin{array}{ccc}
48 & -48 & 12 \\
2411 & -18 & -12 \\
18 & -24 & 6
\end{array}\right]+\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 9 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& 22 A^{-1}=\left[\begin{array}{ccc}
-38+48+1 & 48-48+0 & -34+12+0 \\
-14+24+0 & 15-18+1 & -12-12+0 \\
-11+18+0 & 16-24+0 & -15+6+1
\end{array}\right] \\
& 1 A^{-1}= \\
& \frac{1}{22}\left[\begin{array}{ccc}
11 & 0 & -22 \\
10 & -2 & -24 \\
7 & -8 & -8
\end{array}\right]
\end{aligned}
$$

vi) Given matrix

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right]
$$

The characteric matrix of A is

$$
A-\lambda f=\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right]-\left[\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right]=\left[\begin{array}{ccc}
1-\lambda & 2 & 3 \\
2 & 4-\lambda & 5 \\
3 & 5 & 6-\lambda
\end{array}\right]
$$

The characteristic equation of A is

$$
\begin{aligned}
& |A-\lambda I|=0 \rightarrow\left|\begin{array}{ccc}
1-\lambda & 2 & 3 \\
2 & 4-\lambda & 5 \\
3 & 5 & 6-\lambda
\end{array}\right|=0 \\
& (1-\lambda)[(u-\lambda)(6-\lambda)-25]-2[2(6-\lambda)-15]+3[10-3(u-\lambda)]=0 \\
& (1-\lambda)\left[2 u-6 \lambda-u^{\prime} \lambda+\lambda^{2}-25\right]-2[112-2 \lambda-15]+3[10-12+3 \lambda] \\
& (1-\lambda)\left[2 \lambda^{2}-10 \lambda-1\right]-2[-2 \lambda-3]+3[3 \lambda-2]=0 \\
& \lambda^{2}-10 \lambda-1-\lambda^{3}+10 \lambda^{2}+\lambda+4 \lambda+6+9 \lambda-6=0 \\
& \quad-\lambda^{3}+11 \lambda^{2}+4 \lambda-1=0 \\
& \quad \lambda^{3}-11 \lambda^{2}-4 \lambda+1=0
\end{aligned}
$$

By calcy Hamilton theorem

$$
\begin{aligned}
& A^{2}=A \cdot A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right]\left[\begin{array}{ccc}
11 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right] \\
& =\left[\begin{array}{lll}
1+4+9 & 2+8+15 & 3+10+18 \\
2+8+15 & 4+16+25 & 6+20+30 \\
3+10+18 & -6+20+30 & 9+25+36
\end{array}\right]=\left[\begin{array}{lll}
14 & 25 & 31 \\
25 & 45 & 56 \\
31 & 56 & 70
\end{array}\right] \\
& A^{3}=A^{2}-A=\left[\begin{array}{lll}
14 & 25 & 31 \\
25 & 45 & 56 \\
31 & 56 & 70
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right] \\
& =\left[\begin{array}{lll}
14+50+93 & 28+100+155 & 42+125+186 \\
25+90+168 & 50+180+280 & 25+225+336 \\
31+112+210 & 62+2244350 & 93+280+1520
\end{array}\right] \\
& =\left[\begin{array}{lll}
157 & 283 & 353 \\
283 & 510 & 636 \\
353 & 636 & 793
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& A^{3}-11 A^{2}-4 A+I \\
& =\left[\begin{array}{ccc}
157 & 283 & 353 \\
283 & 510 & 636 \\
253 & 636 & 793
\end{array}\right]-\left[\begin{array}{ccc}
154 & 275 & 341 \\
275 & 495 & 61 \\
341 & 6616 & 770
\end{array}\right]-\left[\begin{array}{ccc}
4 & 8 & 12 \\
8 & 16 & 20 \\
12 & 20 & 24
\end{array}\right]+\left[\begin{array}{ccc}
10 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right] \\
& =\left[\begin{array}{cccc}
157-154-4+1 & 283-275-8+0 & 353-341-12+0 \\
283-275-8+0 & 510-495-16+1 & 636-616 & -20+0 \\
253 & -341-12+0 & 636-616-20+0 & 793-770
\end{array}\right]
\end{aligned}
$$

$$
=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

\therefore coley Hamilton theorem is verified

$$
\begin{aligned}
& A^{3}-11 A^{2}-4 A+J=0 \\
& I=-A^{3}+11 A^{2}+4 A
\end{aligned}
$$

multiplying with A^{-1}

$$
\begin{gathered}
A^{-1}=-A^{2}+11 A+4 I \\
A^{-1}=\left[\begin{array}{ccc}
-14 & -25 & -31 \\
-25 & -45 & -56 \\
-31 & -56 & -70
\end{array}\right]+\left[\begin{array}{ccc}
11 & 22 & 33 \\
22 & 44 & 55 \\
33 & 55 & 66
\end{array}\right]+\left[\begin{array}{ccc}
4 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 4
\end{array}\right] \\
A^{-1}=\left[\begin{array}{ccc}
-14+11+4 & -25+22+0 & -31+33+0 \\
-25+22+0 & -45+44+4 & -56+55+0 \\
-31+33+0 & -56+55+0 & -70+66+4
\end{array}\right] \\
A^{-4}=\left[\begin{array}{ccc}
1 & -3 & 2 \\
-3 & 3 & -1 \\
2 & -1 & 0
\end{array}\right]
\end{gathered}
$$

3. If $A=\left[\begin{array}{rr}3 & 1 \\ -1 & 2\end{array}\right]$ express $2 A^{5}-3 A^{4}+A^{2}-4 I$ as a
galiot linear polynomial in A
sols Given matrix
solus Given

$$
A=\left[\begin{array}{rr}
3 & 1 \\
-1 & 2
\end{array}\right]
$$

The chorocterestic matrix of A is

$$
\begin{aligned}
(A-\lambda I) & =\left[\begin{array}{cc}
3 & 1 \\
-1 & 2
\end{array}\right]-\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right] \\
& =\left[\begin{array}{cc}
3-\lambda & 1 \\
-1 & 2-\lambda
\end{array}\right]
\end{aligned}
$$

The characteristic equation of A is

$$
\begin{aligned}
& |A-\lambda I|=0 \\
& \left|\begin{array}{cc}
3-\lambda & 1 \\
-1 & 2-\lambda
\end{array}\right|=0 \\
& (3-\lambda)(2-\lambda)+1=0 \\
& 6-2 \lambda-3 \lambda+\lambda^{2}+1=0 \\
& \lambda^{2}-5 \lambda+7=0
\end{aligned}
$$

By coley Hamilton theorem

$$
\begin{aligned}
& A^{2}-5 A+7 I=0 \\
& A^{2}=5 A-7 I \\
& A^{3}=5 A^{2}-7 A \\
& A 4=5 A^{3}-7 A^{2} \\
& A^{5}=5 A^{4}-7 A^{3} \\
& 2 A^{5}-3 A^{4}+A^{2}-4 I=2\left[5 A^{4}-7 A^{3}\right]-3 A^{4}+A^{2}-4 I \\
& =7 A^{4}-14 A^{3}+A^{2}-4 I \\
& =7\left[S A^{3}-7 A^{2}\right]-L U A^{3}+A^{2}-4 I \\
& =21 A^{3}-48 A^{2}-4 I
\end{aligned}
$$

$$
\begin{aligned}
& =21\left[5 A^{2}-7 A\right]-48 A^{2}-4 I \\
& =57 A^{2}-147 A-4 I \\
& =57(5 A-7 I)-147 A-4 I \\
& =138 A-403 I
\end{aligned}
$$

4. If $A=\left[\begin{array}{cc}1 & 2 \\ -1 & 3\end{array}\right]$, express $A^{6}-4 A^{5}+8 A^{4}-12 A^{3}+14 A^{2}$ as a
polynomial
Given matrix $A=\left[\begin{array}{cc}1 & 2 \\ -1 & 3\end{array}\right]$
The characteristic matrix of A is

$$
\begin{aligned}
A-\lambda I & =\left[\begin{array}{cc}
1 & 2 \\
-1 & 3
\end{array}\right]-\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right] \\
& =\left[\begin{array}{cc}
1-\lambda & 2 \\
-1 & 3-\lambda
\end{array}\right]
\end{aligned}
$$

the characteristic equation of A is

$$
\begin{aligned}
& \mid A-\lambda I)=0 \\
& \left|\begin{array}{cc}
1-\lambda & 2 \\
-1 & 3-\lambda
\end{array}\right|=0 \\
& (1-\lambda)(3-\lambda)+2=0 \\
& 3-3 \lambda-\lambda+\lambda^{2}+2=0 \\
& \lambda 2 \lambda^{2}+5=0 \\
& u^{2}+0
\end{aligned}
$$

By calcy Hamilton theorem

$$
\begin{aligned}
& A^{2}-4 A+5 I=0 \\
& A^{2}=4 A-5 I \\
& A^{3}=4 A^{2}-5 A \\
& A^{4}=4 A^{3}-5 A^{2} \\
& A^{5}=4 A^{4}-5 A^{3} \\
& A^{6}=4 A^{5}-5 A 4
\end{aligned}
$$

Given equation

$$
\begin{aligned}
& A^{6}-4 A^{5}+8 A^{4}-12 A A^{3}+14 A^{2} \\
& \begin{aligned}
A^{4}-14 & =\left(4 A^{3}-5 A 4\right)-4 A^{5}+8 A^{4}-12 A^{3}+14 A^{2} \\
& =3 A^{4}-12 A^{3}+14 A^{2} \\
& =3-\left[4 A^{3}-5 A^{2}\right]-12 A^{3}+14 A^{2} \\
& =-15 A^{2}+14 A^{2} \\
& =-A^{2}=-4 A+5 I
\end{aligned}
\end{aligned}
$$

Quadratic forms:

* A homogeneous expression of the second degree in any no. of variables is called a suodratic form.
$\epsilon x: 1.3 x^{2}+5 x y-2 y^{2}$ is a quadratic form in $x \xi \cdot y$ 2. $x^{2}+2 y^{2}-3 z^{2}+2 x y-3 y z+5 z x$ is a quadratic form in
* An expression of the form $Q=\mathbb{\sum \lambda} x^{\top} A x=\sum_{i=1}^{n} \sum_{j=1}^{n}$ $a_{i j} x_{i} x_{j}$ where
$A_{i j}$ are constants is called a quadratic form in n variables.
Matrix of a Quadratic form.
Every Quadratic form Q can be expressed os $Q=x^{\top} A x$ The symmetric matrix A is called the matrix of the Quadratic form Q and $|A|$ is called the discriminant of the quadratic form
Note:
* if $|A|=0$ the quadratic form is singlur.
* Ex: To curate the matrix of Quadratic form follow the diagram given below
write the CD-cificients of square terms along the diagonal and divide the co-esticicats of the product terms, $x y, y z, z x$ by 2 and write them at the appropriate places.

$$
\begin{aligned}
& E x: Q=7 x^{2}+8 x y+9 y z+2 x z+3 y^{2}-5 z^{2} \\
& Q=7 x x+4 x y+4 x y+\frac{9}{2} y z+x z+x z+3 y y-5 z z \\
& =7 x x+4 x y+x z \\
& 74 y x+3 y y+\frac{9}{2} y z \text {. } \\
& +z x+\frac{9}{2} z y-5 z z \\
& A=\left[\begin{array}{ccc}
7 & 4 & 1 \\
u & 3 & 9 / 2 \\
1 & 9 / 2 & -5
\end{array}\right] \\
& X=\left[\begin{array}{l}
x \\
\frac{y}{z}
\end{array}\right] ; x T=\left[\begin{array}{lll}
x & y & z
\end{array}\right] ; \\
& \begin{array}{l|ll}
& x & y \\
z & x^{2} & \frac{x y}{2} \\
y & \frac{x z}{2} \\
z & \frac{y x}{2} & y^{2} \\
\frac{z x}{2} & \frac{y z}{2} & z^{2}
\end{array} \\
& Q=x^{\top} A=\left[\begin{array}{lll}
x & y & z
\end{array}\right]\left[\begin{array}{ccc}
7 & 4 & 1 \\
4 & 3 & 9 / 2 \\
1 & 9 / 2 & -5
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
\end{aligned}
$$

write the symmetric matrix of the following $q \cdot F$

1. $x^{2}+2 y^{2}-7 z^{2}-4 x y-6 x z$
2. $2 x^{2}-3 y^{2}+5 z^{2}-6 x y-y z+4 z x$,
3. $4 x y+6 y z+8 z x$

$$
\begin{aligned}
& \text { 3. } 4 x y+6 y z+8 z x \\
& \text { 4. } x^{2} y^{2}+z^{2}+7 x y+9 y z+11 z x \\
& \begin{aligned}
4 \cdot Q= & x^{2} y^{2}+z^{2}+7 x y+9 y z+11 z x \\
Q & =x x+y y+z z+\frac{7}{2} x y+\frac{9}{2} y z+\frac{11}{2} z x \\
& =x x+\frac{7 x y}{2} \frac{11}{2} z x \quad A=\left[\begin{array}{ccc}
1 & 7 / 2 & \frac{11}{2} \\
\frac{7}{2} & -1 & \frac{9}{2} \\
\frac{11}{2} & \frac{9}{2} & 1
\end{array}\right] \\
& \quad+\frac{7}{2} y x-y y+\frac{9}{2} y z+\frac{97 y}{2} y+z z
\end{aligned}
\end{aligned}
$$

$$
\text { 3. } \begin{aligned}
\theta & =4 y+6 y z+z z \% \\
\theta & =\left[\begin{array}{lll}
2 \% y+3 y z+4 z \% \\
2 & 0 & 3 \\
4 & 3 & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
2 \cdot Q= & 2 x^{2}-3 y^{2}+5 z^{2}=1 x y-y z+1 y \% \\
& 9 x \%-3 y y+5 z z-3 x y-\frac{1}{2} y z+2 z x \\
Q= & 9 x x-3 x y+9 z \% \\
& -3 x y-3 y y-\frac{1}{2} y z \\
& 42 z x-\frac{1}{2} z y+5 z z
\end{aligned} \quad A=\left[\begin{array}{ccc}
2 & -3 & 2 \\
-3 & -3 & -10 \\
2 & -1 / 2 & 5
\end{array}\right]
$$

$$
\text { 1. } x^{2}+2 y^{2}-7 z^{2}-4 x y-6 x z
$$

$==1$

$$
\begin{aligned}
& a=x x+2 y y-7 z z-2 x y-3 x z \\
& a=x x-2 x y-3 x z \quad A=\left[\begin{array}{ccc}
1 & -2 & -3 \\
-2 & 2 & 0 \\
-3 & 0 & -7
\end{array}\right]
\end{aligned}
$$

ante $31212014-3 x z+0 \cdot y z-7 z z$
Write the auodrotic form of corresponding to the motrin

1) $\left[\begin{array}{ccc}1 & 9 & 3 \\ 2 & 0 & 3 \\ 3 & 3 & 1\end{array}\right]$
2) $\left[\begin{array}{ccc}2 & 1 & 5 \\ 1 & 3 & -2 \\ 5 & -2 & 4\end{array}\right]$ 3) $\left[\begin{array}{lll}1 & 2 & 5 \\ 2 & 0 & 3 \\ 5 & 3 & 4\end{array}\right]$
3)

$$
\left.\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3 \\
3 & 3 & 1
\end{array}\right] \quad 5\right)\left[\begin{array}{ccc}
0 & 5 & -1 \\
5 & 1 & 6 \\
-1 & 6 & 2
\end{array}\right]
$$

gwen madiox

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 0 & 3 \\
3 & 3 & 1
\end{array}\right], x T=\left[\begin{array}{lll}
x & y & 2
\end{array}\right] x x=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

Quadratic form $Q=X^{\top} A X$

$$
\begin{aligned}
& =\left[\begin{array}{lll}
x & y & z
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 0 & 3 \\
3 & 3 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \\
& =[x+2 y+3 z \quad 2 x+3 z \quad 3 x+3 y+z]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \\
& =x(x+2 y+3 z)+y(2 x+3 z)+z(3 x+3 y+z) \\
& =x^{2}+2 x y+3 z x+2 x y+3 z x+3 z y+z \\
& =x^{2}+z^{2}+4 x y+6 z x+3 z y
\end{aligned}
$$

3) Given matrix

$$
\left[\begin{array}{lll}
1 & 2 & 5 \\
2 & 0 & 3 \\
5 & 3 & 4
\end{array}\right], x^{\top}=\left[x^{2} y z\right], x=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

Quadratic form

$$
\begin{aligned}
Q & =x^{\top} A x \\
= & {\left[\begin{array}{ll}
x, & z
\end{array}\right]\left[\begin{array}{ccc}
2 & 5 \\
2 & 0 & 3 \\
5 & 3 & 4
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] } \\
= & x(x+2 y+5 z)+y(2 x+3 z)+2(5 x+3 y+4 z) \\
= & x^{2}+2 x y+5 z x+2 x y+3 z y+5 z x+3 z y+4 z \\
= & x^{2}+4 z^{2}+4 x y+10 z x+6 y z
\end{aligned}
$$

Rank of a Quadratic form
Let $X^{\top} A X$ be a quadratic form the rank $R(A)$ is called the rank of the quadratic form. If ' r 'is lest han $n,|A|=0$ (Orr)' A is singular then the quadratic form is called" singular" otherwise "no n-singular"
Canonical Form (or) formal form of a Quadratic form

Let $X^{\top} A x$ be a quadratic form in n variables then there exsist a real non- singular linear transfor motion $X=P . y$ which fronsfoms $X^{\top} A X$ to another Quadratic form of type $y^{T D} y=\lambda_{1} y_{1}{ }^{2}+\lambda_{2} y_{2}{ }^{2}+\lambda_{3} y_{3}{ }^{2}+$... $+\lambda n y_{n}{ }^{2}$ then $y^{\top} D y$ is called the conanical form of Quadratic form of $X^{\top} A X$ Here $D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3} \ldots \lambda_{n}\right)$
Index of a Real quadratic Form
The number of positive terms in canonical form of Quadratic form is known as the index of the Quadratic form and is denoted by 's.'
Signature of a Quadratic form
If ' r is the rank of the quadratic form and 'sis the index of the quadratic form then $2 s-r$ is collied the signature of the quadratic form $x^{\tau} \theta x$. Suture of Quadratic Forms
\Rightarrow Positive Definite
The Quadratic form $x^{\top} A x$ in n variables is said to be positive Definite if all the eigen values of A are positive (or) If $r=n$ and $s=n$ i.e., $r=s=n$
$\Rightarrow \perp$ Negative aclinite.
The quadrate form $x^{t} x$ in n variables is said to be negative definite if $r=n$ and $s=0$ (or) if all the eigen values of A are negative.
\Rightarrow Positive - Semi-Definite
The Quadratic form ' $X^{\top} A X$ in n variables is sard to be positive semi definite. if $r<n$ \& $S=r(o r)$ If all the eigen values of $A \geqslant 0$ and atleast one eigen value is zero
\Rightarrow Svegotive- Semi-Definite
The Quadratic form ' $X^{\top} A$ 'X in n variables is said to be negative semidefinite if $r<n \xi s=0$ (or) Th all the cigen values of $A \leq 0$. and at least one eigen value is zero
\Rightarrow In-Definite
In all other cases, if all the cigen values of A are positive and negative, then the Quadratic form is called in-definite.

1. Tidentify the nature of the quadratic forms.
i) $x_{1}^{2}+4 x_{2}^{2}+x_{3}^{2}-4 x_{1} x_{2}+2 x_{1} x_{3}-4 x_{2} x_{3}$
ii) $x^{2}+4 x y+6 x z-y^{2}+2 y z+4 z^{2}$
iii) $x^{2}+y^{2}+9 z^{2}-2 x y+2 x z$
iv) $2 x^{2}-19 y^{2}+6 z^{2}+18 x y+8 y z+62 x$.

Solus i) Given quadratic form

$$
\begin{aligned}
& \text { i) Given Quadratic, } \\
& \quad Q=x_{1}^{2}+4 x_{2}^{2}+x_{3}{ }^{2}-4 x_{1} x_{2}+9 x_{1} x_{3}-4 x_{2} 1_{3} \\
& Q=x^{\top} A X, A=\left[\begin{array}{rrr}
1 & -2 & 1 \\
-2 & 4 & -2 \\
1 & -2 & 1
\end{array}\right]
\end{aligned}
$$

characteristic equation of A is

$$
\begin{aligned}
& \text { 2) } \left\lvert\, \begin{array}{c}
|A-\lambda I|=0 \\
1-\lambda
\end{array}-2\right.,1 \\
& (1-\lambda)[(u-\lambda)(1-x)-4]+2[-2(1-x)+2]+(4-14 u+x)]=0 \\
& \text { (1-x) }\left[4-\lambda-4 \lambda+\lambda^{2}-4\right]+2[-x+2 \lambda+2]+4-y+\lambda=0 \\
& (1-\lambda)\left[\lambda^{2}-5-\lambda\right]+4 \lambda+\lambda=0 \\
& \lambda^{2}-5 \lambda-\lambda^{3}+5 \lambda^{2}+5 \lambda=0 \\
& -\lambda^{3}+6 \lambda^{2}=0 \\
& \lambda^{2}=6 \lambda^{x} \\
& \lambda=6 ; x=0,0,6
\end{aligned}
$$

Eigen values two are zeroes and the remaining is positive
Hence given quadratic form is positive semi definite
(1) Given Quadratic form

$$
\begin{aligned}
& Q=2 x^{2}+9 y^{2}+6 z^{2}+8 x y+8 y z+6 z x \\
& Q=x^{T} A x, A=\left[\begin{array}{ccc}
2 & 4 & 3 \\
4 & 9 & 4 \\
3 & 4 & 6
\end{array}\right]
\end{aligned}
$$

The choracteristic equation of A is

$$
\begin{aligned}
& \mid A-\lambda I=0 \\
& \left|\begin{array}{ccc}
2-\lambda & 4 & 3 \\
4 & 9-\lambda & 4 \\
3 & 4 & 6-\lambda
\end{array}\right|=0 \\
& (2-\lambda) \cdot[(9-\lambda)(6-\lambda)-16]-4[4(6-\lambda)-12]+3[16-3[9-\lambda)]=0 \\
& (2-\lambda)\left[5 u-6 \lambda-9 \lambda+\lambda^{2}-16\right]-4[2 u-4 \lambda-12]+3[16-27+3 \lambda]=0 \\
& (2-\lambda)\left[3 \theta-15 \lambda+\lambda^{2}\right]-4\left[12^{2}-4 \lambda\right]+3[3 \lambda-11]=0 \\
& 2 \lambda^{2}-30 \lambda+76-\lambda^{3}+15 \lambda-3 \lambda^{2}-\frac{56}{38} \lambda-48+16 \lambda+9 \lambda-33=0 \\
& -\lambda^{3}+17 \lambda^{2}-43 \lambda-5=0 \\
& \lambda^{3}-17 \lambda^{2}+43 \lambda+5=0
\end{aligned}
$$

i4) Gigen quadratie form

$$
\begin{aligned}
& A=x^{2}+4 x y+6 x=-y^{2}+2 y z+4 z^{2} \\
& A=x A x, A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & -1 & 1 \\
3 & 1 & 4
\end{array}\right]
\end{aligned}
$$

The choracteristic equation of A is

$$
\begin{gathered}
|A-\lambda I|=0 \\
\left|\begin{array}{ccc}
1-\lambda & 2 & 3 \\
2 & -1-\lambda & 1 \\
3 & 1 & 4-\lambda
\end{array}\right|=0 \\
(1-\lambda)\left[\left.\begin{array}{cc}
(-1-\lambda)(u-\lambda \mid-1
\end{array} \right\rvert\,-2[2(4-\lambda)-3]+3[2-3(-1-\lambda)]=1\right. \\
(1-\lambda)\left[-4-u \lambda+\lambda+\lambda^{2}-1\right]-2[8-2 \lambda-6]+3[2+3+3 \lambda]=0 \\
(1-\lambda)\left[\lambda^{2}-3 \lambda-5\right]-2[-2 \lambda+2]+3[3 \lambda+5]=0 \\
\lambda^{2}-3 \lambda-5-\lambda^{3}+3 \lambda^{2}+5 \lambda+4 \lambda-4+9 \lambda+15=0 \\
-\lambda^{3}+4 \lambda^{2}+15 \lambda+6=0 \\
\lambda^{3}-4 \lambda^{2}-15 \lambda-6=0
\end{gathered}
$$

iii) Giver Quadrate form

$$
\begin{aligned}
& Q=x^{2}+y^{2}+2 z^{2}-2 x y+2 x z \\
& Q=X^{T} A X A=\left[\begin{array}{ccc}
1 & -1 & 1 \\
-1 & 1 & 0 \\
2 & 0 & 2
\end{array}\right]
\end{aligned}
$$

The characteristic equation of A is

$$
\begin{aligned}
& |A-\lambda I|=0 \\
& \left|\begin{array}{ccc}
1-\lambda & -1 & 1 \\
-1 & 1-\lambda & 0 \\
1 & 0 & 2-\lambda
\end{array}\right|=0 \\
& (1-\lambda)[(1-\lambda)(2-\lambda)-0]+1[-1(2-\lambda)-0]+1[0-(1-\lambda)]=0 \\
& (1-\lambda)\left[2-2 \lambda-\lambda+\lambda^{2}-0\right]+[-2+\lambda]+\lambda-1=0 \\
& (1-\lambda)\left[\lambda^{2}-3 \lambda+2\right]-2+\lambda+\lambda-1=0 \\
& \lambda^{2}-3 \lambda+2-\lambda^{3}+3 \lambda^{2}-2 \lambda-3+2 \lambda=0 \\
& -\lambda^{3}+2 \lambda^{2}-3 \lambda-1=0 \\
& \lambda^{3}-4 \lambda^{2}+3 \lambda+1=0
\end{aligned}
$$

2. Given matrix

$$
A=\left[\begin{array}{ccc}
2 & 1 & 5 \\
1 & 3 & -2 \\
5 & -2 & 4
\end{array}\right] \quad x_{1}^{\top}=[x, y, z] ; x=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

Quadratic form $Q=x^{\top} A x$

$$
\begin{aligned}
& =\left[\begin{array}{lll}
x & y & z
\end{array}\right]\left[\begin{array}{ccc}
2 & 1 & 5 \\
1 & 3 & -2 \\
5 & -2 & 4
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \\
& =\left[\begin{array}{ll}
2 x+y+5 z \\
=[x(2 x+y+5 z) y(x+3 y-2 z) z(5 x-2 y+4 z)] \\
=2 x^{2}+x y+5 z x+x^{\prime} y+3 y^{2}-2 z y+5 z x-2 z y+4 z^{2} \\
=2 x^{2}+3 y^{2}+4 z^{2}+2 x y+10 z x-4 z y
\end{array}, \begin{array}{l}
x \\
y
\end{array}\right]
\end{aligned}
$$

4. Given matrix

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3 \\
3 & 3 & 1
\end{array}\right] \quad x^{T}=\left[\begin{array}{lll}
x & y & z
\end{array}\right] ; x=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

Quadratic form $\bar{Q}=x^{\top} A x$

$$
\left.\begin{array}{l}
=\left[\begin{array}{lll}
x & y & z
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 1 & 3 \\
3 & 3 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \\
=\left[\begin{array}{ll}
x+2 y+3 z & 2 x+y+3 z
\end{array}\right] x+3 y+z
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \quad \text { 年 }
$$

5. Given matrix

$$
A=\left[\begin{array}{ccc}
0 & 5 & -1 \\
5 & 1 & 6 \\
-1 & 6 & 2
\end{array}\right] \quad X^{T}=\left[\begin{array}{lll}
x & y & z
\end{array}\right] ; x\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

Quadratic form $\quad Q=X^{\top} A X$

$$
\begin{aligned}
& =\left[\begin{array}{lll}
x & y & z
\end{array}\right]\left[\begin{array}{ccc}
0 & 5 & -1 \\
5 & 6 & 6 \\
-1 & 6 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \\
& =\left[\begin{array}{ll}
5 y-z & 5 x+y+6 z
\end{array}\right] \\
& =[x+6 y+2 z]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \\
& =\left[2 x+2 x+5 x y+y^{2}+6 z y-x z+6 y z+2 z^{2}\right]
\end{aligned}
$$

ale $y^{2}+2 z^{2}+10 x y+12 y z-2 x z$

1. Reduce the matrix $A=\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1\end{array}\right]$ to a diagonal in terms of Reduce the matrix $A=\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & \div- & 3\end{array}\right]$ result in terms of
and interrupt the rank
Quadrate forms
signature, Index.
alt) $A=I_{3} A I_{3}$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 21 & 0 \\
0 & 0 & 1008
\end{array}\right] C_{3} \rightarrow \nrightarrow C_{3}+C_{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & 3 & 0 \\
-6 & 3 & 21
\end{array}\right] A\left[\begin{array}{ccc}
1 & 1 & -6 \\
0 & 3 & 3 \\
0 & 0 & 21
\end{array}\right]} \\
& D=P^{\top} A P \\
& D=\text { dial (6, 21, } 1008) \\
& D=\left[\begin{array}{ccc}
6 & 0 & 0 \\
0 & 21 & 0 \\
0 & 0 & 1008
\end{array}\right] P^{\top}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & 3 & 0 \\
-6 & 3 & 21
\end{array}\right] P=\left[\begin{array}{ccc}
1 & 1 & -6 \\
0 & 3 & 3 \\
0 & 0 & 21
\end{array}\right]
\end{aligned}
$$

Quadratic form $=x^{T} A x$

$$
\begin{aligned}
& =\left[\begin{array}{lll}
x & y & z
\end{array}\right]\left[\begin{array}{ccc}
6 & -2 & 2 \\
-2 & 3 & -1 \\
2 & -1 & 3
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right] \\
& =6 x^{2}+3 y^{2}+3 z^{2}-4 x y+4 x z-2 y z
\end{aligned}
$$

Non-singular fransformation corresponding to the matrix p is $x=p y$

$$
\begin{aligned}
{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] } & =\left[\begin{array}{ccc}
1 & 1 & -6 \\
0 & 3 & 3 \\
0 & 0 & 21
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right] \\
& =\left[y_{1}+y_{2}-6 y_{3}, 3 y_{2}+3 y_{3} \quad 21 y_{3}\right] \\
x & =y_{1}+y_{2}-6 y_{3} ; y=3 y_{2}+3 y_{3} ; z=21 y_{3}
\end{aligned}
$$

canonical form $=y^{T D} y=6 y_{1}^{2}+21 y_{i 2}^{2}+1008 y_{3}{ }^{2}$,
Rance of A is $C(A)=3$ (rank of diagonal matrix zen serous)
Index $=S^{i}=3$ (n oof positive, terms)

- Signature $=2 s-r=2(3)-3=(3$

2. find the rank signature, index of the quadratic form
i) $2 x_{1}{ }^{2}+x_{2}-3 x_{3}^{2}+12 x_{1} x_{2}=8 x_{2} x_{3}-4 x_{1} x_{3}$. by reducing
ito into canonical form also write the linear transformation. which brings about the normal reduction.
(a)! given

Quadratic form

$$
=P x_{1}^{2}+x_{2}^{2}-3 x_{3}^{2}+12 x_{1} x_{2}-8 x_{2} x_{3}-4 x_{1} x_{3}
$$

given quadrate form into matrix.

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
2 & 6 & -2 \\
6 & 1 & -4 \\
-2 & -4 & -3
\end{array}\right] \\
& A=I_{3} A I_{3} \\
& {\left[\begin{array}{ccc}
2 & 6 & -2 \\
6 & 1 & -4 \\
-2 & -4 & -3
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] A\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & -17 & 2 \\
0 & 2 & -5
\end{array}\right] \begin{array}{l}
c_{2} \rightarrow c_{2}-3 c_{1} \\
c_{3} \rightarrow c_{3}+c_{1}
\end{array}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-3 & 1 & 0 \\
1 & 0 & 1
\end{array}\right] A\left[\begin{array}{ccc}
1 & -3 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & -17 & 2 \\
0 & 0 & 81
\end{array}\right] \underset{R_{3} \rightarrow-17 R_{3}-2 R_{2}}{ }=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-3 & 1 & 0 \\
-11 & -2 & -17
\end{array}\right] A\left[\begin{array}{ccc}
1 & -3 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

Quadratic form $=X^{T} A X$

$$
\left.\begin{array}{l}
=[x y z]\left[\begin{array}{ccc}
2 & 6 & -2 \\
6 & 1 & -4 \\
-2 & -4 & -3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\begin{array}{l}
2 x^{2}+6 x y-2 z x \\
+6 x \cdot y+y^{2}-4 z y \\
-7 x z-4 y z-3 z
\end{array} \\
1-2 z 6 x+y-4 z
\end{array}-2 x-4 y-3 z\right] .
$$

$=[2 x+6 y-2 z 6 x+y-4 z-2 x-4 y-3 z]$

$$
2 x^{2}+y^{2}=3 z^{2}+12 x y-4 z x-8 z y
$$

Non singular transformation corresponding to the matrix p is $x=p y$.

$$
\begin{aligned}
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] }=\left[\begin{array}{ccc}
1 & -3 & -11 \\
0 & 1 & -9 \\
0 & 0 & -17
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right] \\
&=\left[y_{1}-3 y_{2}-11 y_{3} y_{2}-2 y_{3}-17 y_{3}\right] \\
& x=y_{1}-3 y_{2}-11 y_{3} ; y=y_{2}-2 y_{3}^{\prime} \quad z=-17 y_{3}
\end{aligned}
$$

canonical form $=y^{\top} D Y=2 y_{1}^{2}-17 y_{2}^{2}+1377 y_{3}^{2}$
Rank: of A is $\quad f(A)=3$

1. Index $S=2$
pate
3) ${ }^{2} 2019$ Reduction to Normal form by orthogonal transfor motion.
working Rule:
1. Write the co-efficient matrix ' A ' assucialed with the given quadratic form
2. Find the eigen values of A.

3: Write the canonic cal form using $\lambda_{1} y_{1}{ }^{2}+\lambda_{2} y_{2}{ }^{2}+\ldots+\lambda_{n} \nu_{n}^{2}$ N4 Form the matrix p containing. The normalized Eigen vectors, of A as column vectors. then
$x=p y$ gives the required orthogonal transformation which reduces quadratic form to canonical form.

Reduce the quadratic form $3 x^{2}+2 y^{2}+322$ - $2 x y-2 y^{2}$
to the normal form by orthogonal transformation.
all) Given Quadratic form

$$
Q=3 x^{2}+2 y^{2}+3 z^{2}-2 n y-2 y z
$$

The matrix form

$$
n=\left[\begin{array}{ccc}
3 & -1 & 0 \\
-1 & 2 & 1 \\
0 & -1 & 3
\end{array}\right]
$$

The characteristic equation of A is

$$
\begin{aligned}
& |A-\lambda I|=0 \\
& \left|\begin{array}{ccc}
3-\lambda & -1 & 0 \\
-1 & 2-\lambda & -1 \\
0 & -1 & 3-\lambda
\end{array}\right|=0 \\
& (3-\lambda)[(2-\lambda)(3-\lambda)-1]+1[-(3-\lambda)-0]+0=0 \\
& (3-\lambda)\left[6-3 \lambda-2 \lambda+\lambda^{2}-1\right]+[-3+\lambda]=0 \\
& (3-\lambda)\left[\lambda^{2}-5 \lambda+5\right]-3+\lambda=0 \\
& 3 \lambda^{2}-15 \lambda+15-\lambda^{3}+5 \lambda^{2}-5 \lambda-3+\lambda=0 \\
& -\lambda^{3}+\delta \lambda^{2}-19 \lambda+12=0 \\
& \lambda^{3}-8 \lambda^{2}+19 \lambda-12=0 \\
& 1 \left\lvert\, \begin{array}{cc|cc}
1 & -8 & 19 & -12 \\
0 & 1 & -7 & 12 \\
\hline 1 & -7 & 12 & 0
\end{array}\right. \\
& \left(\begin{array}{c}
0 \\
(\lambda-1) \\
(\lambda-7 \lambda+12)=0 \\
2
\end{array} \lambda^{2} u \lambda \lambda^{2}+2\right. \\
& (\lambda-1)\left[\lambda^{2}-4 \lambda-3 \lambda+12\right] \frac{1}{=} 0 \\
& (\lambda-1)\left[\left(\lambda(\lambda-u)^{\prime}-3 L^{\prime} \lambda-u\right)^{\prime}\right]=0 \\
& (\lambda-1)(\lambda-u)(\lambda-3)=0 \\
& \lambda=1, u, 3
\end{aligned}
$$

The are the characteristic roots $01,4,3$
care (i)

$$
\begin{aligned}
& \text { Pf } \lambda=1 \quad(A-\lambda I) x=0 \\
& {\left[\begin{array}{ccc}
3 & -1 & 0 \\
-1 & 1 & -1 \\
0 & -1 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
0 & -1 & 0 \\
0 & 1 & -2 \\
0 & -1 & 2
\end{array}\right] P_{2} \rightarrow 2 R_{2}+R_{1}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
2 & -1 & 0 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right] \quad D_{3} \rightarrow R_{3}+R_{2}\left[\begin{array}{l}
x \\
y \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& P_{0} n=2, n=3 . \\
& n-r=3-2=1 \quad l-I \cdot S \\
& 9 x-y=0 ; y-2 z=0 ; z=k \\
& 2 x-2 k=0 y=2 k \\
& x=k \\
& x=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
k \\
2 k \\
k
\end{array}\right]=k\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]
\end{aligned}
$$

case(ii)

$$
\text { If } \lambda=4 \quad(A-\lambda I) x=0
$$

$$
\begin{array}{ccc}
\lambda=4 & (A-\lambda 1 & -1
\end{array} 0
$$

$$
\left[\begin{array}{ccc}
0 & -1 & 0 \\
0 & -1 & -1 \\
0 & -1 & -1
\end{array}\right] \begin{aligned}
& R_{2} \rightarrow R_{2}+R_{3}
\end{aligned}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

$$
\left[\begin{array}{ccc}
-1 & -1 & 0 \\
0 & -1 & -1 \\
0 & 0 & 0
\end{array}\right] R_{3} \rightarrow R_{3}-R_{2}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

$$
(1 A)=2 \cdot \quad n-Y=3-2=1[\cdot I \cdot 5
$$

$$
\begin{array}{cc}
-x-y=0, & -y-2=y z=k \\
x+k=0, & -y-k=0, \\
x=+k=k \\
x_{3}=\left[\begin{array}{l}
x \\
y_{1} \\
2
\end{array}\right]=\left[\begin{array}{c}
-k \\
-k \\
1 \\
k
\end{array}\right]=\left[\begin{array}{c}
+1 \\
-1 \\
1
\end{array}\right] \\
\text { Eggen } \\
x_{1}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right], x_{3}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right], x_{3}=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
\end{array}
$$

$\operatorname{case}(9 i \varphi)$
If $\lambda=3 ;$ then $(A-\lambda I) x=0$

$$
\begin{aligned}
& {\left[\begin{array}{cc:c}
0 & -1 & 0 \\
-1 & -1 & -1 \\
0 & -1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]_{1}} \\
& \because\left[\begin{array}{ccc}
0 & -1 & 0 \\
-1 & -1 & -1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
2 \\
y \\
z
\end{array} R_{3} \rightarrow R_{3}-R_{1}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right. \\
& C(A)=2 ; n=3 \\
& n-r=3-2, \mathrm{~L} . \mathrm{I} . S \\
& -y=0 ;-x+y-z_{1}=0 ; \quad z=k \\
& x-x-0-1, k=0 \\
& -x=k \\
& \text { in } x=-k \\
& x_{2}=\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-k \\
0 \\
k
\end{array}\right]=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] k
\end{aligned}
$$

Here
x. We observed that x_{1}, x_{2}, x_{3} are mutually 1 ier -

$$
x_{1} x_{2}=x_{2} x_{3}=x_{3} x_{1}=0
$$

The normalized vectors ore

$$
\begin{aligned}
& c_{1}=\left[\begin{array}{c}
\frac{1}{\sqrt{6}} \\
\frac{2}{\sqrt{6}} \\
\frac{1}{\sqrt{6}}
\end{array}\right] \quad c_{2}=\left[\begin{array}{c}
\frac{-1}{\sqrt{2}} \\
0 \\
\frac{1}{\sqrt{2}}
\end{array}\right] \quad c_{3}=\left[\begin{array}{c}
\frac{1}{\sqrt{3}} \\
\frac{-1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}}
\end{array}\right] \\
& P=\left[\begin{array}{lll}
c_{1} & c_{2} & e_{3}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{\sqrt{6}} & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\
\frac{2}{\sqrt{6}} & 0 & -1 / \sqrt{3} \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & 1 / \sqrt{3}
\end{array}\right] \text {. } \\
& B=P^{\top} A P \\
& D=\left[\begin{array}{ccc}
\frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} & 1 / \sqrt{6} \\
\frac{-1}{\sqrt{2}} & 0 & 1 / \sqrt{2} \\
1 / \sqrt{3} & -1 / \sqrt{3} & 1 / \sqrt{3}
\end{array}\right]\left[\begin{array}{ccc}
3 & 5 & 0 \\
2 & 2 & -1 \\
0 & -1 & 3
\end{array}\right]\left[\begin{array}{ccc}
1 / \sqrt{6} & -1 / \sqrt{2} & 1 / \sqrt{3} \\
2 / \sqrt{6} & 0 & -1 / \sqrt{3} \\
1 / \sqrt{6} & 1 / \sqrt{2} & 1 / \sqrt{3}
\end{array}\right] \begin{array}{c}
\text { H. } \\
\text { at } \\
\text { Hlill }
\end{array} \\
& \begin{array}{l}
=\left[\begin{array}{lll}
3 / \sqrt{6}-2 / \sqrt{6}+0 & -1 / \sqrt{6}+4 / \sqrt{6}-1 / \sqrt{6} & 0-2 / \sqrt{6}+3 / \sqrt{2} \\
-3 / \sqrt{2}+0+0 & 1 / \sqrt{2}+0-1 / \sqrt{2} & 0+0+3 / \sqrt{2} \\
3 / \sqrt{3}+1 / \sqrt{3}+0 & -1 / \sqrt{3}-2 / \sqrt{3}-1 / \sqrt{3} & 0+1 / \sqrt{3}+ \\
=\left[\begin{array}{ccc}
1 / \sqrt{6}+2 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\
-3 / \sqrt{2} & 0 & 3 / \sqrt{2} \\
4 / \sqrt{3} & -4 / \sqrt{3} & 4 / \sqrt{3}
\end{array}\right] \cdot\left[\begin{array}{lll}
1 / \sqrt{6} & -1 / \sqrt{2} & 1 / \sqrt{3} \\
2 / \sqrt{6} & 0 & -1 / \sqrt{3} \\
1 / \sqrt{6} & 1 / \sqrt{2} & 1 / \sqrt{3}
\end{array}\right]
\end{array} .\right.
\end{array} \\
& =\left[\begin{array}{ccc}
\frac{1}{6}+\frac{4}{6}+\frac{1}{6} & -1 / 12+0+1 / \sqrt{12} & 1 / \sqrt{18}-2 / \sqrt{18}+1 / \sqrt{18} \\
\frac{-3}{\sqrt{12}}+0+3 / \sqrt{12} & 3 / 2+0+3 / 2 & -3 / \sqrt{6}+0+3 / \sqrt{6} \\
4 / 18-8 / \sqrt{18}+4 / 18 & -4 / \sqrt{6}+0+4 / \sqrt{6} & \frac{4}{3}+\frac{4}{3}+\frac{4}{3}
\end{array}\right] \\
& =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 4
\end{array}\right]=\operatorname{diog}(1,3,4)
\end{aligned}
$$

orthogonal transformation

$$
\begin{aligned}
& x=p y \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{lll}
1 / \sqrt{6} & -1 / \sqrt{2} & 1 / \sqrt{3} \\
2 / \sqrt{6} & 0 & -1 / \sqrt{3} \\
1 / \sqrt{6} & 1 / \sqrt{2} & 1 / \sqrt{3}
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]} \\
& x=\frac{y_{1}}{\sqrt{6}}-\frac{y_{2}}{\sqrt{2}}+\frac{y_{3}}{\sqrt{3}} \\
& y=\frac{2 y_{1}}{\sqrt{6}}-y_{3} / \sqrt{3} \\
& z=\frac{y_{1}}{\sqrt{6}}+\frac{y_{2}}{\sqrt{2}}+\frac{y_{3}}{\sqrt{3}}
\end{aligned}
$$

pate 2. Reduce the Quadratic form $3 x^{2}+5 y^{2}+3 z^{2}-2 y z$ Hill $+2 z x-2 x y$ to the canonical form by orthogonal
"/s reduction
$-\|_{3} \quad 3$. $\quad x_{1}^{2}+3 x_{2}^{2}+3 x_{3}^{2}-2 x_{2} x_{3}$
$\|_{3}$ 4. $2 x^{2}+2 y^{2}+2 z^{2}-2 x y-2 y z-2 z x$

$$
\begin{aligned}
& \text { Quadratic form } \\
& Q \cdot F=3 x^{2}+5 y^{2}+3 z^{2}-2 y z+2 z x-2 x y \\
& \text { form }
\end{aligned}
$$

The matrix form

$$
A=\left[\begin{array}{ccc}
3 & -1 & -1 \\
-1 & 5 & -1 \\
1 & -1 & 3
\end{array}\right]
$$

The characteristic equation of A is

$$
\left.\begin{aligned}
& |A-\lambda I|=0 \\
& \left|\begin{array}{ccc}
3-\lambda & -1 & 1 \\
-1 & 5-\lambda & -1 \\
1 & -1 & 3-1
\end{array}\right|=0
\end{aligned} \right\rvert\,
$$

$$
\begin{aligned}
& {[(3-\lambda)[3(5-\lambda)-1]+1[-3+1]+1[1-(5-\lambda)]=0} \\
& (3-\lambda)[15-3 \lambda-1]+1[-2]+r[1-5+\lambda]=0 \\
& \text { (3- } 1 \text {) }\left[14-3 \lambda^{\prime} \lambda-2+\lambda-4=0\right. \\
& 42-14 \lambda-9 \lambda+3 \lambda^{2}+\lambda-6=0 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& 3 \lambda^{2}-22 \lambda+36=07 \\
& (3-\lambda)[(5-\lambda)(3-\lambda)-1]+1[-(3-\lambda)+1]+i[1-(5-\lambda)]=0^{\frac{12}{\frac{41}{32}}} \\
& \text { (3- })\left[15-3 \lambda-5 \lambda+\lambda^{2}-1\right]+[-3+\lambda+1]+1-5+\lambda=0 \\
& (3-\lambda)\left[\lambda^{2}-8 \lambda+14\right]+\lambda-2+\lambda-u=0 \\
& 3 \lambda^{2}-24 \lambda+42-\lambda^{3}+8 \lambda^{2}-14 \cdot \lambda+2 \lambda-6=0 \\
& -\lambda^{3}+11 \lambda^{2}-36 \lambda+36=0 \\
& \lambda^{3}-11 \lambda^{2}+36 \lambda-36=0 \text {. } \\
& 3 \left\lvert\, \begin{array}{rrrr}
1 & -11 & 36 & -36 \\
0 & 3 & -24 & 36 \\
1 & -8 & 1.2 & 0
\end{array}\right. \\
& \lambda^{2}-8 \lambda+12=0 \\
& (\lambda-3)\left[\lambda^{2}-6 \lambda-2 \lambda+12\right]=0 \\
& (\lambda-3)[\lambda(\lambda-6)-2(\lambda-6)]=0 \\
& (\lambda-2)(\lambda-3)(\lambda-6)=0 \text {, } \\
& \lambda=2,3,6
\end{aligned}
$$

case (ii)

$$
\begin{aligned}
& \text { caselii) } \\
& \text { If } \lambda=2 \quad(A-\lambda I) x=0 \\
& {\left[\begin{array}{ccc}
1 & -1 & 1 \\
-1 & 3 & -1 \\
1 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{rrr}
1 & -1 & 1 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow R_{2}+R_{1}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{array}}
\end{aligned}
$$

$$
\begin{aligned}
& C(A)=2, \quad n=3 \\
& n-r=3-2=1, \text { L.I-S } \\
& x-y+z=0 ; 2 y=0 ; \text { let } z=k \\
& x-0+k=0 \quad y=0 ; \\
& x=-k \\
& \therefore x_{1}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-k \\
0 \\
k
\end{array}\right]=k\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

(ase (iii)

$$
\begin{aligned}
& \text { If } \lambda=6 \quad(A-\lambda I) x=0 \\
& {\left[\begin{array}{ccc}
-3 & -1 & 1 \\
-1 & -1 & -1 \\
1 & -1 & -3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
-3 & -1 & 1 \\
0 & -2 & -4 \\
0 & -4 & -8
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow 3 R_{2}-R_{1} \\
R_{3} \rightarrow 3 R_{3}+R_{1}
\end{array}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
-3 & -1 & 1 \\
0 & -2 & -4 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \therefore R_{3} \rightarrow 2 R_{3}-4 R_{2}=\left[\begin{array}{c}
0 \\
0 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
-3 & -1 & 1 \\
01+1 & 2 \\
0,1 & 0
\end{array}\right]^{1}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] R_{2} \rightarrow \frac{R_{2}}{-2}=\left[\begin{array}{c}
0 \\
0 \\
0
\end{array}\right]} \\
& f(A)=2, n=31 \\
& \therefore n-r=3-2=1 \quad \text { UI-S } \\
& -3 x-y+z=0 \quad \therefore y+2 z=0 ; \quad z k \\
& -3 x+2 k+k=0 \quad y+2 k=0 \\
& \begin{aligned}
-3 x & =-3 k \quad 1 . y=-2 k \\
x & =k
\end{aligned} \\
& x=k \\
& \therefore x_{3}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=k\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]
\end{aligned}
$$

case(pp)

$$
\text { If } \lambda=3 \quad(A-\lambda I) x=0
$$

$$
\left[\begin{array}{ccc}
0 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

$$
\left[\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right] \underset{R_{1} \leftrightarrow P_{23}}{\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] R_{2} \rightarrow R_{2}+R_{1}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
0 & -1 & 1
\end{array}\right] z} \\
& {\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] R_{3} \rightarrow R_{3}+R_{2}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}
\end{aligned}
$$

$$
\begin{array}{cl}
x-y=0 & y-z=0 \\
x-k=0 & y-k=0
\end{array}
$$

$$
\begin{array}{rlrl}
x-y & =0 & y-k & =0 \\
x-k & =0 & y & =k .
\end{array}
$$

$$
x_{1}=\left[\begin{array}{c}
x=k . \\
0 \\
1
\end{array}\right] \quad x_{2}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] ; x_{3}=\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]
$$

we observed that x_{1}, x_{2}, x_{3}, are mutually perpend p alar

$$
\left.\begin{array}{l}
\text { We observed } \\
\quad e_{1}=\left[\begin{array}{c}
\frac{-1}{\sqrt{2}} \\
0 \\
\frac{1}{\sqrt{2}}
\end{array}\right],\left[\begin{array}{c}
\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}}
\end{array}\right] \cdot e_{3}=\left[\begin{array}{cc}
\frac{-2}{\sqrt{6}} \\
\frac{1}{\sqrt{6}}
\end{array}\right] \\
p=\left[\begin{array}{lll}
e_{1} & e_{2} & e_{3}
\end{array}\right]=\left[\begin{array}{ccc}
-1 / \sqrt{2} & 1 / \sqrt{3} & -2 / \sqrt{6} \\
0 & 1 / \sqrt{3} & 1 / \sqrt{6}
\end{array}\right] \\
1 / \sqrt{2}=[1 / \sqrt{3}
\end{array}\right]
$$

$$
\begin{aligned}
& D=P^{\top} A P \\
& D=\left[\begin{array}{ccc}
\frac{-1}{\sqrt{2}} & 0 & 1 / \sqrt{2} \\
1 / \sqrt{3} & 1 / \sqrt{3} & 1 / \sqrt{3} \\
1 / \sqrt{6} & \frac{-2}{\sqrt{6}} & 1 / \sqrt{6}
\end{array}\right]\left[\begin{array}{ccc}
3 & -1 & 1 \\
-1 & 5 & -1 \\
1 & +1 & 3
\end{array}\right]\left[\begin{array}{ccc}
\frac{-1}{\sqrt{2}} & 1 / \sqrt{3} & 1 \sqrt{6} \\
0 & 1 / \sqrt{3} & -2 / \sqrt{6} \\
1 / \sqrt{2} & 1 / \sqrt{3} & 1 / \sqrt{6}
\end{array}\right] \\
& =\left[\begin{array}{lll}
-\frac{3}{\sqrt{2}}+0+\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}}+10-\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}+0+\frac{3}{\sqrt{2}} \\
\frac{3}{\sqrt{3}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{3}}+\frac{5}{\sqrt{3}}-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}}-\frac{1}{\sqrt{3}}+\frac{3}{\sqrt{3}} \\
\frac{3}{\sqrt{6}}+\frac{2}{\sqrt{6}}+\frac{1}{\sqrt{6}} & \frac{-1}{\sqrt{6}}-\frac{10}{\sqrt{6}}-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}}+\frac{2}{\sqrt{6}}+\frac{3}{\sqrt{6}}
\end{array}\right]\left[\begin{array}{lll}
\frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\
0 & \frac{1}{\sqrt{3}} & \frac{-2}{\sqrt{6}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \frac{1}{\sqrt{6}}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-\frac{2}{\sqrt{2}} & 10 & -\frac{2}{\sqrt{2}} \\
\frac{3}{\sqrt{3}} & \frac{3}{\sqrt{3}} & \frac{3}{\sqrt{3}} \\
\frac{6}{\sqrt{6}} & \frac{-12}{\sqrt{6}} & \frac{6}{\sqrt{6}}
\end{array}\right]\left[\begin{array}{ccc}
\frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\
0 & 1 / \sqrt{3} & -2 / \sqrt{6} \\
\frac{1}{\sqrt{2}} & 1 / \sqrt{3} & 1 / \sqrt{6}
\end{array}\right] \\
& =\left[\begin{array}{lll}
\frac{2}{2}+0+\frac{2}{2} & \frac{-2}{6}+0+\frac{2}{6} & \frac{-2}{12}+0+\frac{3}{12} \\
\frac{-3}{6}+0+\frac{3}{6} & \frac{3}{9}+\frac{3}{9}+\frac{3}{3} & \frac{36}{18}-\frac{6}{18}+\frac{3}{18} \\
\frac{-6}{18}+\frac{6}{18}+\frac{6}{12} & \frac{6}{18}-\frac{12}{18}+\frac{6}{18} & \frac{24}{16}+\frac{6}{36}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 6
\end{array}\right]=\operatorname{diag}(2,3,0) \\
& \begin{array}{c}
\text { orthogonar transformation } \\
x=p y
\end{array} \\
& x=p y \\
& {\left[\begin{array}{c}
\alpha \\
y \\
z
\end{array}\right]=\left[\begin{array}{ccc}
-1 / \sqrt{2} & 1 / \sqrt{3} & 1 / \sqrt{6} \\
0 & 1 / \sqrt{3} & -2 / \sqrt{6} \\
1 / \sqrt{2} & 1 / \sqrt{3} & 1 / \sqrt{6}
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{1} \\
y_{3}
\end{array}\right]} \\
& \therefore x=-\frac{y_{1}}{\sqrt{2}}+\frac{y_{2}}{\sqrt{3}}+\frac{y_{3}}{\sqrt{6}} ; y=\frac{y_{2}}{\sqrt{3}}-\frac{2 y_{3}}{\sqrt{6}} ; z=\frac{y_{1}}{\sqrt{2}}+\frac{y_{2}}{\sqrt{3}}+\frac{y_{3}}{\sqrt{6}}
\end{aligned}
$$

4. Girven muadratic form

$$
\text { Q.f }=2 x^{2}+2 y^{2}+2 z^{2}-2 x y-2 y z-2 z x
$$

matrix

$$
A=\left[\begin{array}{rrr}
2 & -1 & -1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right]
$$

The choracteristic equation of A is
$\operatorname{casc}(9)$

$$
\text { If } \lambda=0 \quad(A-\lambda I) x=0
$$

$$
\varepsilon_{1}, \quad \text { i } \quad\left[\begin{array}{ccc}
-2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

$$
\begin{aligned}
& (A-\lambda I)=0 \\
& 1\left|\begin{array}{ccc}
2-\lambda & -1 & -i \\
-1 & 2-\lambda & -1 \\
-1 & 1,-1, & 2-\lambda
\end{array}\right|=0 \\
& (2-\lambda)\left[\left(2-\lambda^{\prime}\right)(2-\lambda)-1\right]+1[-(2-\lambda)-1]-1[1+(2-\lambda)]=0 \text {. } \\
& (2-\lambda)\left[4-12 \lambda-2 \lambda+\lambda^{2}-1\right]+[-2+\lambda-1]-[1+2-\lambda]=0 \\
& (2-\lambda)\left[\lambda^{2}-4 \lambda+3\right]+[\lambda-3]-[3-\lambda]=0 \\
& \text { (2- } \lambda^{\prime} \text {) }\left[\lambda^{2}-4 \lambda+3\right] \cdot 1 \lambda-3-3+\lambda=0 \\
& 2 \lambda^{2}-8 \lambda+6-\lambda^{3}+4 \lambda^{2}-3 \lambda+2 \lambda-6=0 \\
& -\lambda^{3}+6 \lambda^{2}-9 \lambda=0 \\
& \lambda^{3}-6 \lambda^{2}+9 \lambda=0 \\
& \lambda\left(\lambda^{2}-6 \lambda+9\right)=0 \\
& \lambda\left[\lambda^{2}-3 \lambda-3 \lambda+9\right]=0 \\
& \lambda[\lambda(\lambda-3)-3(\lambda-3)]=0 \text { i } \\
& \lambda(\lambda-3)(\lambda-3)=0 \\
& \lambda, 0,3,3
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
2 & -1 & -1 \\
0 & 3 & -3 \\
0 & -3 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow 2 R_{2}+R_{1} \\
R_{3} \rightarrow 2 R_{3}+R_{1}
\end{array}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
2 & -1 & -1 \\
0 & 3 & -3 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] R_{3} \rightarrow R_{3}+R_{2}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& C(A)=2 ; n=3 \\
& n-r=3-2=1 \quad L \cdot I \cdot S \\
& 2 x-y-z=0 \quad ; 3 y-3 z=0 ; \quad z=k \\
& 2 x-k-k=0 \\
& 3 y-3 k=0 \\
& x=k \\
& 3 y=3 k \\
& y=k \\
& x_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] k
\end{aligned}
$$

Case (ii)

$$
\begin{aligned}
& \text { if } \lambda=3 ;(A-\lambda I) x=0 \\
& {\left[\begin{array}{ccc}
-1 & -1 & -1 \\
-1 & -1 & -1 \\
-1 & -1 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
-1 & -1 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \begin{array}{c}
R_{2} \rightarrow R_{2}-R_{1} \\
R_{3} \rightarrow R_{3}-R_{1}
\end{array}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& \tau(A)=1 ; n=3 \\
& n-r=3-1=2 \quad L \cdot I . S \\
& -x-y-z=0 ; \quad y=k_{1} ; \quad z=k_{2} \\
& -x-k_{1}-k_{2}=0 \\
& x+\left(k_{1}+k_{2}\right)=0 \\
& x=-\left(k_{1}+k_{2}\right) \\
& x_{2}=\left[\begin{array}{c}
-k_{1}-k_{2} \\
k_{1} \\
k_{2}
\end{array}\right](o r)=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right] k_{1}+\left[\begin{array}{c}
1 \\
0 \\
1
\end{array}\right] k_{2}
\end{aligned}
$$

$\lim \rho$
DIAGONALISATION
if square matrix of A order n has a linearly indipendent ign vectors then a matrix can be found such that inward A are is a diagonal matrix. EA

$$
B=\left[x_{1}, x_{2}, x_{3}\right]
$$

here
x_{1}, x_{2}, x_{3} are the ign vectors of the given matrix.
Q. diagonalive the matrix

$$
A=\left[\begin{array}{ccc}
L & L^{2} & 2^{2} A \\
-L & 2 & 1 \\
0 & 1 & -1
\end{array}\right] A C A B+A C+A A^{2} A S+A=
$$

Sol: The $C H$ matrix, of A is $A_{3} A$

$$
\begin{aligned}
& \text { there } 52+A-A I C-62+r^{2} A 2-A_{0}+t^{2} A 8
\end{aligned}
$$

The afleqn of A

$$
\begin{aligned}
& |A-\lambda T|=0 \\
& \left|\begin{array}{ccc}
1-\lambda & 1 & -2 \\
-1 & 2-\lambda & 1 \\
0 & 1 & -1-\lambda
\end{array}\right|=0 \\
& \text { aip } 1 \\
& -+1 \\
& (1-\lambda)[(2-\lambda)(-1-\lambda)-1]+1[-1(-1-\lambda)-0]-2[-1-0]=0 \\
& (1-\lambda)\left[-2-2 \lambda+\lambda+\lambda^{2}-1\right]-1(1+\lambda)+2=0 \\
& (1-\lambda)\left[\lambda^{2}-\lambda-3\right]-1-\lambda+2=0 \\
& (1-\lambda)\left(\lambda^{2}-\lambda-3\right)-\lambda+1=0 \Rightarrow(1-\lambda)(\lambda-\lambda-3)-\lambda+1 \\
& \Rightarrow(1-\lambda)(\lambda-\lambda 3)+(1-\lambda) \\
& \lambda^{2}-\lambda-3-\lambda^{3}+\lambda^{2}+3 \lambda-\lambda+1=0 \\
& (1-\lambda)\left(\lambda^{2}-\lambda-3\right) \\
& -\lambda^{3}+2 \lambda^{2}+\lambda-2=0 \\
& \lambda^{3}-2 \lambda^{2}-\lambda+2=0 \\
& \lambda=1 \Rightarrow i-2-1+2=0, \quad \Delta=\left[x_{1}, y_{2}, x_{i}\right] \\
& \lambda \lambda^{2}-\lambda-2 \\
& (\lambda-1) \sqrt{\frac{\lambda^{3}-2 \lambda^{2}-\lambda+2}{\lambda^{3}-\lambda^{2}}} \begin{array}{l}
\frac{-\lambda^{2}-\lambda+2}{-\lambda^{2}+\lambda} \\
\frac{-2 \lambda+2}{}
\end{array} \\
& (\lambda-1)\left(\lambda^{2}-\lambda-2\right)=0 \\
& \lambda-1=0 \quad \left\lvert\, \begin{array}{l}
\lambda^{2}-\lambda-2=0 \\
(\lambda-2)(\lambda+1)=0
\end{array}\right. \\
& \lambda=-1,1,2 .
\end{aligned}
$$

The eigen roots of A are $-1,1,2$
Core it
if $\lambda=-5$ then $|A-\lambda I| x=0$

$$
\left[\begin{array}{ccc}
2 & 1 & -2 \\
-1 & 3 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \tag{3}\\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

put $y=0$ in $\operatorname{eq}^{x}(7)$ \& g $^{\prime}$ (2)

$$
\begin{aligned}
& 2 x-2 z=0 \\
& -x+z=0
\end{aligned}
$$

$$
\begin{gathered}
2 n-2 z=0 \\
-2 n+2 z \\
-n+z=0 \\
n=z
\end{gathered}
$$

$\operatorname{tet} 2=k$

$$
\begin{gathered}
x=k, \quad z=k \\
y=0=(1+k)(=6)
\end{gathered}
$$

$0 . \mathrm{ms}$

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
k \\
0 \\
k
\end{array}\right]=k\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

cose - II
if $\lambda=2$ then $|A-\lambda I|=0$

$$
\left[\begin{array}{ccc}
0 & 1 & -2 \\
-1 & 1 & 1 \\
0 & 1 & -2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

$$
\begin{equation*}
y-2 z=0 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
-x+y+z=0 \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
y-2 z=0 \tag{3}
\end{equation*}
$$

vet

$$
\begin{aligned}
& z=k \\
& \begin{array}{l}
y-2 z=0 \\
y-2 z=0
\end{array} \\
& y-2 z=0 \\
& y-2 k=0 \\
& +2 k=+y \\
& y=2 k \\
& -x+2 x+k=0 \\
& -n+3 k=0 \\
& {\left[\begin{array}{l}
x=3 k \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
3 k \\
2 k \\
k
\end{array}\right]=k\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right],}
\end{aligned}
$$

care-31
if $\lambda=2$ then $|A-\lambda I|=0$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
-1 & 1 & -2 \\
-1 & 0 & 1 \\
0 & 1 & -3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& -x+y-2 z=0 \\
& -x+z=0 \\
& y-3 z=0
\end{aligned}
$$

Let

$$
\begin{gathered}
\text { Let. } z=k \\
-x+k=0 \\
+x=+k \\
\underline{x=k} \\
-k+y-2 k=0 \\
y-3 k=0 \\
y=3 k \\
{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
k \\
8 k \\
k
\end{array}\right] r k\left[\begin{array}{c}
1 \\
3
\end{array}\right]}
\end{gathered}
$$

Hinere eign veefors are

$$
\left[\begin{array}{cc|c}
\infty & c & 3 \\
0 & 1 & 2 \\
L & 1 & 3
\end{array}\right] \begin{gathered}
\forall \varepsilon \\
\cdots
\end{gathered}
$$

$$
\begin{aligned}
& B=\left[x_{1}, x_{2} x_{3}\right]=\left[\begin{array}{lll}
1 & 3 & 1 \\
0 & 2 & 3 \\
1 & 2 & 1
\end{array}\right] \\
& B^{-1}=\frac{1}{|B|} \text { ady } B \\
& =1(2-3)-3(0-3)+1(0-2) \\
& =-1+9-2 \\
& =-6 \neq 0 \text {. }
\end{aligned}
$$

cofactor of $1=(2-3)^{\prime}=-1$

$$
\begin{aligned}
& \text { 1. } \quad 3=-(0-9)=3 \\
& \text { 11 } \quad 11 \quad 1=(0-2)=-2 \text {. } \\
& \text { 1. } \quad 11 \quad 0=-(3-1)=-2 \\
& \text { " } 11 \quad 2,=(1-1)=0 \text {. } \\
& 3=-(1-3)=2 \\
& =(9-2)=7 \\
& =-(3-0)=-3 \\
& =2-0=2 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { co - factormatrix of } B=\left[\begin{array}{ccc}
-1 & 3 & -2 \\
-2 & 0 & 2 \\
7 & -3 & 2
\end{array}\right] \\
& \operatorname{adj} B=\left[\begin{array}{ccc}
-1 & -2 & 7 \\
3 & 0 & -3 \\
-2 & 2 & 2
\end{array}\right] \\
& B^{-1}=\frac{1}{|B|} \text { adj| } B=\frac{1}{6}\left[\begin{array}{ccc}
-1 & -2 & 7 \\
3 & 0 & -3 \\
-2 & 2 & 2
\end{array}\right] \\
& B^{-1} A-B=\frac{1}{6}\left[\begin{array}{ccc}
-1 & -2 & 7 \\
3 & 0 & 3 \\
-2 & 2 & 2
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & -2 \\
-1 & 2 & 1 \\
0 & 1 & -1
\end{array}\right]\left[\begin{array}{lll}
1 & 3 & 1 \\
0 & 2 & 3 \\
1 & 1 & 1
\end{array}\right] \\
& =\frac{1}{6}\left[\begin{array}{ccc}
-1+2+0 & -1+4+7 & 2-2-7 \\
3-0-0 & 3+0-3 & -6+0+3 \\
-2-2+0 & -2+4+2 & 4+2-2
\end{array}\right]\left[\begin{array}{lll}
1 & 3 & 1 \\
0 & 2 & 3 \\
1 & 1 & 1
\end{array}\right] \\
& =\frac{1}{6}\left[\begin{array}{ccc}
1 & 2 & -7 \\
3 & 0 & -3 \\
-4 & 4 & 4
\end{array}\right]\left[\begin{array}{lll}
1 & 3 & 1 \\
0 & 2 & 3 \\
1 & 1 & 1
\end{array}\right] \\
& =\frac{1}{6}\left[\begin{array}{ccc}
1+0-7 & 3+4-7 & 1+6-7 \\
3+0-3 & 9+0-3 & 3+0-3 \\
-4+0+4 & -12+8+4 & -4+12+4
\end{array}\right] \\
& =\frac{1}{6}\left[\begin{array}{ccc}
-6 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & 12
\end{array}\right] \\
& =\left[\left[\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right] .\right.
\end{aligned}
$$

ii a gonatisafiom by formation.
saproppese, a is a real symmetry matrix then. a characterists matrix of a will not be linearly indipendent. and also ware orthogonal. if we normalise each characteristics vector or eign vectors (x) we divide each component of X. by the square root of the sum of the squares of all elements, write all normalized ign vectors to form normalized motormodel matrix B then it can be easily shown that. B is an orthogonal matrix and:
\bar{B} equal to B transpose.
therefore the symelerity transform

$$
\bar{B} A B=D
$$

Where D is the diagonal matrix:
this frarformation transpose $A B$ is equal to D, is known as orthogonal fransformafien.
Q. Calculation of powers of 9 matrix.

Let,
A be the given matrix of $A B$ order 3 . we know that
g. mp

$$
\begin{aligned}
D & =B^{-1} A B \\
D^{2} & =\left(B^{-1} A B\right)\left(B^{-} A-B\right) \\
& =\left(B^{-1} A\right)\left(B^{-1}\right)(A B) \\
& =\left(B^{-1} A\right)(I)(A B)
\end{aligned}
$$

$$
D^{2}=B^{-1} A^{2} B .
$$

$111^{\prime y}$
sol': The cH matron of A is

$$
A-d I
$$

$$
\begin{aligned}
& D^{3}=B^{-1} A^{3} B \\
& ! \\
& \Delta^{n}=B^{-1} A^{n} B \\
& \therefore\left(B D^{n} B^{-1}\right)=B\left(B^{-1} A^{n} B J B^{-1}\right. \\
& =A^{n} \\
& A^{\eta}=\left(B D^{n} B^{-1}\right) \\
& D=\left[\begin{array}{lll}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right] \\
& D^{n}=\left[\begin{array}{ccc}
A_{1}{ }^{n} & 0 & 0 \\
0 & \lambda_{2}^{n} & 0 \\
0 & 0 & \lambda_{3}^{n}
\end{array}\right] \\
& Q \text {. } \\
& A=\left[\begin{array}{ccc}
2 & 1 & -1 \\
1 & 1 & -2 \\
-1 & -2 & 1
\end{array}\right] \text { ht } 0.11
\end{aligned}
$$

d.mp

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
2 & 1 & -1 \\
1 & 1 & -2 \\
-1 & -2 & 1
\end{array}\right]-\left[\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
-2-\lambda & 1 & -1 \\
1 & 1-\lambda & -2 \\
-1 & -2 & 1-\lambda
\end{array}\right]}
\end{aligned}
$$

The CH . eqn of A is

$$
\begin{aligned}
& |A-\lambda I|=0 \\
& {\left[\begin{array}{ccc}
2-\lambda & 1 & -1 \\
1 & 1-\lambda & -2 \\
-1 & -2 & 1-\lambda
\end{array}\right]=0} \\
& (2-\lambda)\left[(1-\lambda)^{2}-4\right]-1[(1-x)-2]-1[-2-(-1+\lambda)] \\
& (2-\lambda)\left[1-2 \lambda+\lambda^{2}-4\right]-1[-\lambda-1]-1[-2+1-\lambda]=0 \\
& (2-\lambda)\left[\lambda^{2}-2 \lambda-3\right]+\lambda+1+1+\lambda=0 \\
& 2 \lambda^{2}-4 \lambda-6-\lambda^{3}+2 \lambda^{2}+3 \lambda^{2}+2 \lambda+2=0 \\
& -\lambda^{3}+4 \lambda^{2}+\lambda-4=0 \\
& \lambda^{3}-4 x^{2}-\lambda+j=0 \\
& \lambda^{3}-\lambda^{2}-3 \lambda^{2}+9 \lambda+34+4=0 \\
& \lambda^{2}(\lambda-1)-3 \lambda(\lambda-1)^{\prime}-4(\lambda-1)=0 \\
& (\lambda-1)\left(\lambda^{2}-3 \lambda-4 J=0\right. \\
& \int \lambda^{2}-4 \lambda+x-4=0 \\
& \lambda(\lambda-4)+1(\lambda-4)=0 \\
& (\lambda+1)(\lambda-4)=0, \\
& \lambda=-1,1,4
\end{aligned}
$$

$0 \cdot m \cdot s$
The CH roots of the cqn is $-1,1,4$.
case (1)
if $\lambda=-1$, then

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
3 & A & -1 \\
1 & 2 & -2 \\
-1 & -2 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
2
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .} \\
& \left.\left[\begin{array}{ccc}
3 & 1 & -1 \\
0 & 5 & -5 \\
0 & -5 & 5
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow 3 R_{2}-R_{1} \\
R_{3} \rightarrow 3 R_{3}+R_{1}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
2
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ccc}
3 & 1 & -1 \\
0 & 5 & -5 \\
0 & 0 & 0
\end{array}\right] \begin{array}{l}
1 \\
R_{3} \rightarrow R_{3}+R_{2}
\end{array}\left[\begin{array}{l}
x \\
y_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& 3 x+y-2=0 \\
& 5 y-5 z=0,
\end{aligned}
$$

let,

$$
\begin{gathered}
z=k \\
5 y-5 k=0 \\
3 y=5 k \\
y=k \\
3 x+k-k=0 \\
x=0 \\
{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
k \\
k
\end{array}\right]=k\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]}
\end{gathered}
$$

Core (2)
if $\lambda=1$ then

$$
\begin{aligned}
& A-\lambda I=0 \\
& \therefore\left[\begin{array}{rrr}
1 & 1 & -1 \\
1 & 0 & -2 \\
-1 & -2 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] . \\
& {\left[\begin{array}{ccc}
1 & 1 & -1 \\
0 & -1 & -1 \\
0 & -1 & -1
\end{array}\right] \underset{\substack{ \\
R_{2} \rightarrow R_{2}-R_{1} \\
R_{3^{\prime}} \rightarrow R_{3} \\
0}}{ }\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
1 & 1 & -1 \\
0 & -1 & -1 \\
0 & 0 & 0
\end{array}\right] R_{3} \rightarrow R_{3}-R_{2}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& x+y-z=0 \\
& -y-z=0 \\
& \rho(A)=2, \quad n=3, \quad n-\gamma=3-2=1 \quad \text { LI. \& }
\end{aligned}
$$

vet, $z=k 1$

$$
\begin{gathered}
-y-k_{1}=0 \\
-y=k_{1} \\
y=-k_{1} \\
x-k_{1}-k_{1}=0 \\
x-2 k_{1}=0 \\
x=2 k_{1}
\end{gathered}
$$

J.ms

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
2 k, \\
-k_{1} \\
k_{1}
\end{array}\right]=\dot{k}_{1}\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right]
$$

Case.(3)

$$
\begin{aligned}
& A-\lambda I=0 \\
& {\left[\begin{array}{ccc}
-2 & 1 & -1 \\
1 & -3 & -2 \\
-1 & -2 & -3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .} \\
& {\left[\begin{array}{ccc}
-2 & 1 & -1 \\
0 & -5 & -5 \\
0 & -5 & -5
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow 2 R_{2}+R_{1} 1 \\
R_{3} \rightarrow 2 R_{3}-R_{1}
\end{array}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
-2 & 1 & -1 \\
0 & -5 & -5 \\
0 & 0 & 0
\end{array}\right] \quad R_{3} \rightarrow R_{3}-R_{2}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \text {. }} \\
& -2 x+y-z=0 \\
& -5 y-52=0 \\
& \rho(n)=2, n=3, n-r=3-2=1 \quad \text { l.I. } \quad n
\end{aligned}
$$

let

$$
\text { let } \begin{aligned}
& z=k_{1} \\
&-5 y^{\prime}-5 k_{1}=0 \\
&-5 y=5 k_{1} \\
& y=-k_{1} \\
&-2 x-k_{1}-k_{1}=0 \\
&-2 n-2 k_{1}=0 \\
&-2 n=2 k_{1} \\
& x=-k_{1}
\end{aligned}
$$

$$
x_{3}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-k_{1} \\
-k_{1} \\
k_{1}
\end{array}\right]=k_{1}\left[\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right]=k_{1}\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right]
$$

eign reefor

$$
\begin{array}{rlrl}
B & =\left[x_{1} x_{2} x_{3}\right. \\
& =\left[\begin{array}{ccc}
0 & \frac{1}{\sqrt{1 T+1}} \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right]_{-1} & \frac{0}{\sqrt{0^{2}+1^{2}+1^{2}}} & \frac{1}{\sqrt{A+1+1}}
\end{array}
$$

We obserbed that eigon vectors are pair-wise

$$
\begin{aligned}
& \text { orthogonal. } \\
& B=\left[\begin{array}{ccc}
\frac{0}{\sqrt{2}} & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{-1}{\sqrt{3}}
\end{array}\right] \cdot \frac{0}{\sqrt{2}} \frac{2}{\sqrt{2}} \frac{2}{\sqrt{6}} \\
& B^{-1}=\beta^{T}=\left[\begin{array}{ccc}
0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\
-\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}}
\end{array}\right] \\
& A^{-1} A B=\left[\begin{array}{ccc}
0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}}
\end{array}\right]\left[\begin{array}{ccc}
2 & 1 & -1 \\
1 & 1 & -2 \\
-1 & c^{2} & 1
\end{array}\right]\left[\begin{array}{ccc}
0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{3}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
0+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}} & 0+\frac{1}{\sqrt{2}}-\frac{2}{\sqrt{2}} & 0-\frac{2}{\sqrt{2}}+\frac{1}{\sqrt{2}} \\
\frac{4}{\sqrt{6}}-\frac{1}{\sqrt{6}}-\frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}}-\frac{1}{\sqrt{6}}-\frac{2}{\sqrt{6}} & \frac{-2}{\sqrt{6}}+\frac{2}{\sqrt{6}}+\frac{1}{\sqrt{6}} \\
\frac{2}{\sqrt{3}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}+\frac{2}{\sqrt{3}} & \frac{1}{\sqrt{3}}-\frac{2}{\sqrt{3}}-\frac{1}{\sqrt{3}}
\end{array}\right]\left[\begin{array}{ccc}
0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{6}} & \frac{-1}{\sqrt{3}}
\end{array}\right]
\end{aligned}
$$

arms

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
0-\frac{1}{2}-\frac{1}{2} & 0+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}} & 0-\frac{1}{\sqrt{6}}+\frac{1}{\sqrt{6}} \\
0-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} & \frac{4}{6}+\frac{1}{6}+\frac{1}{6} & \frac{2}{\sqrt{18}}-\frac{1}{\sqrt{18}}-\frac{1}{\sqrt{18}} \\
0+\frac{4}{\sqrt{6}}-\frac{4}{\sqrt{6}} & \frac{8}{\sqrt{18}}-\frac{4}{\sqrt{18}}-\frac{4}{\sqrt{18}} & \frac{4}{3}+\frac{4}{3}+\frac{4}{3}
\end{array}\right]} \\
& =\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 4
\end{array}\right]=D(-1,1,4) 1
\end{aligned}
$$

Recall that if A is a symmetric $n \times n$ matrix, then A has real eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ (possibly repeated), and \mathbf{R}^{n} has an orthonormal basis v_{1}, \ldots, v_{n}, where each vector v_{i} is an eigenvector of A with eigenvalue λ_{i}. Then

$$
A=P D P^{-1}
$$

where P is the matrix whose columns are v_{1}, \ldots, v_{n}, and D is the diagonal matrix whose diagonal entries are $\lambda_{1}, \ldots, \lambda_{n}$. Since the vectors v_{1}, \ldots, v_{n} are orthonormal, the matrix P is orthogonal, ie. $P^{T} P=I$, so we can alternately write the above equation as

$$
\begin{equation*}
A=P D P^{T} . \tag{1}
\end{equation*}
$$

A singular value decomposition (SVD) is a generalization of this where A is an $m \times n$ matrix which does not have to be symmetric or even square.

1 Singular values

Let A be an $m \times n$ matrix. Before explaining what a singular value decomposition is, we first need to define the singular values of A.

Consider the matrix $A^{T} A$. This is a symmetric $n \times n$ matrix, so its eigenvalues are real.

Lemma 1.1. If λ is an eigenvalue of A, hen $\lambda \geq 0$.
Proof. Let x be an eigenvector of $A^{T} A$ with eigenvalue λ. We compute that

$$
\|A x\|^{2}=(A x) \cdot(A x)=(A x)^{T} A x=x^{T} A^{T} A x=x^{T}(x x)=\lambda x^{T} x=\lambda\|x\|^{2} .
$$

Since $\|A x\|^{2} \geq 0$, it follows from the above equation that $\lambda\|x\|^{2} \geq 0$. Since $\|x\|^{2}>0$ (as our convention is that cigenvectors are nonzoro) we deduce that $\lambda \geq 0$.

Let $\lambda_{1}, \ldots, \lambda_{n}$ denote the eigenvalues of A^{T} / A, with repetitions. Order these so that $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \geq 0$. Let $\sigma_{i}=\sqrt{\lambda_{1}}$, so that $\sigma_{1} \geq \sigma_{2} \geq$ $\cdots \geq \sigma_{n} \geq 0$.

Definition 1.2. The numbers $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n} \geq 0$ defined above are called the singular values of A.

Proposition 1.3. The numbre of nonzero singular values of A equals the runk: of A.

Proof. The rank of any square matrix equals the number of nonsero eigenvalues (with repetitions), so the number of nonzero singular values of A equals the rank of $A^{T} A$. By a previous homework problem, $A^{T} A$ and A have the same kernel. It then follows from the "rank-mullity" theorem that $A^{T} A$ and A have the same rank.

Remark 1.4. In particular, if A is an $m \times n$ matrix with $m<n$, then A has at most m nonzero singular values, because $\operatorname{rank}(A) \leq m$.

The singular values of A have the following geometric significance.
Proposition 1.5. Let A be an $m \times n$ matrix. Then the maximum value of $\|A x\|$, where x ranges over unit vectors in \mathbf{R}^{n}, is the largest singular value σ_{1}, and this is achieved when x is an eigenvector of $A^{T} A$ with eigenvalue σ_{1}^{2}.
Proof. Let v_{1}, \ldots, v_{n} be an orthonormal basis for \mathbb{R}^{n} consisting of eigenvectors of $A^{T} A$ with eigenvalues σ_{i}^{2}. If $x \in \mathbf{R}^{n}$, then we can expand x in this basis as

$$
\begin{equation*}
x=c_{1} v_{1}+\cdots+c_{n} v_{n} \tag{2}
\end{equation*}
$$

for scalars c_{1}, \ldots, c_{n}. Since x is a unit vector, $\|x\|^{2}=1$, which (since the vectors v_{1}, \ldots, v_{n} are orthonormal) means that

$$
c_{1}^{2}+\cdots+c_{n}^{2}=1
$$

On the other hand,

$$
\|A x\|^{2}=(A x) \cdot(A x)=(A x)^{T}(A x)=x^{T} A^{T} A x=x \cdot\left(A^{T} A x\right) .
$$

By (2), since v_{i} is an eigenvalue of $A^{T} A$ with eigenvalue σ_{i}^{2}, we have

$$
A^{T} A x=c_{1} \sigma_{1}^{2} v_{1}+\cdots+c_{n} \sigma_{n}^{2} v_{n} .
$$

Taking the dot prodoct with (2), and using the fact that the vectors v_{1}, \ldots, v_{n} are orthonormal, we get

$$
\|A x\|^{2}=x \cdot\left(A^{T} A x\right)=\sigma_{1}^{2} c_{1}^{2}+\cdots+\sigma_{n}^{2} c_{n}^{2} . \quad I
$$

Since σ_{1} is the largest singular value, we get

$$
\|A x\|^{2} \leq \sigma_{1}^{2}\left(c_{1}^{2}+\cdots+c_{n}^{2}\right) .
$$

Equality holds when $c_{1}=1$ and $c_{2}=\cdots=c_{n}=0$. Thus the maximum value of $\|A x\|^{2}$ for a unit vector x is σ_{1}^{2}, which is achieved when $x=w_{1} \quad \square$

One can similarly show that σ_{2} is the maximum of $\|A x\|$ where x ranges over unit vectors that are orthogonal to t_{1} (exercise). Likewise, σ_{3} is the maximum of $\|A x\|$ where x ranges over unit vectors that are orthogonal to r_{1} and r_{2}; and so forth.

2 Definition of singular value decomposition

Let A be an $m \times n$ matrix with singular values $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n} \geq 0$. Let r denote the number of nonzero singular values of A, or equivalently the rank of A.

Definition 2.1. A singular value decomposition of A is a factorization

$$
A=U \Sigma V^{T}
$$

where:

- U is an $m \times m$ orthogonal matrix.
- V is an $n \times n$ orthogonal matrix.
- Σ is an $m \times n$ matrix whose $i^{\text {th }}$ diagonal entry equals the $i^{\text {th }}$ singular value σ_{i} for $i=1, \ldots, r$. All other entries of Σ are zero.

Example 2.2. If $m=n$ and A is symmetric, let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of A, ordered so that $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{n}\right|$. The singular values of A are given by $\sigma_{i}=\left|\lambda_{i}\right|$ (exercise). Let v_{1}, \ldots, v_{n} be orthonormal eigenvectors of A with $A v_{i}=\lambda_{i} v_{i}$. We can then take V to be the matrix whose columns are v_{1}, \ldots, v_{n}. (This is the matrix P in equation (1).) The matrix Σ is the diagonal matrix with diagonal entries $\left|\lambda_{1}\right|, \ldots,\left|\lambda_{n}\right|$. (This is almost the same as the matrix D in equation (1), except for the absolute value signs.) Then U must be the matrix whose columns are $\pm v_{1}, \ldots, \pm v_{n}$, where the sign next to v_{i} is + when $\lambda_{i} \geq 0$, and - when $\lambda_{i}<0$. (This is almost the same as P, except we have changed the signs of some of the columns.)

3 How to find a SVD

Let A be an $m \times n$ matrix with singular values $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n} \geq 0$, and let r denote the number of nonzero singular values. We now explain how to find a SVD of A.

Let v_{1}, \ldots, v_{n} be an orthonormal basis of \mathbb{R}^{n}, where v_{i} is an eigenvector of $A^{T} A$ with cigenvalue σ_{i}^{2}.

Lemma 3.1. (a) $\left\|A v_{i}\right\|=\sigma_{i}$.
(b) If $i \neq J$ then $A v$ and $A v_{j}$ are orthogonal.

Poof: We compnte

$$
\left(A v_{i}\right) \cdot\left(A v_{j}\right)=\left(A v_{i}\right)^{T}\left(A v_{j}\right)=v_{i}^{T} A^{T} A v_{j}=v_{i}^{T} \sigma_{j}^{2} v_{j}=\sigma_{j}^{2}\left(v_{i} \cdot v_{j}\right) .
$$

If $i=j$, then since $\left\|v_{i}\right\|=1$, this calculation tells us that $\left\|A v_{i}\right\|^{2}=\sigma_{j}^{2}$, which proves (a). If $i \neq j$, then since $v_{i} \cdot v_{j}=0$, this calculation shows that $\left(A v_{i}\right) \cdot\left(A v_{j}\right)=0$.
Theorem 3.2. Let A be an $m \times n$ matrix. Then A has a (not unique) singular value decomposition $A=U \Sigma V^{T}$, where U and V are as follows:

- The columns of V are orthonormal eigenvectors v_{1}, \ldots, v_{n} of $A^{T} A$, where $A^{T} A v_{i}=\sigma_{i}^{2} v_{i}$.
- If $i \leq r$, so that $\sigma_{i} \neq 0$, then the $i^{\text {th }}$ column of U is $\sigma_{i}^{-1} A v_{i}$. By Lemma 3.1, these columns are orthonormal, and the remaining columns of U are obtained by arbitrarily extending to an orthonormal basis for \mathbb{R}^{m}.

Proof. We just have to check that if U and V are defined as above, then $A=U \Sigma V^{T}$. If $x \in \mathbb{R}^{n}$, then the components of $V^{T} x$ are the dot products of the rows of V^{T} with x, so

$$
V^{T} x=\left(\begin{array}{c}
v_{1} \cdot x \\
v_{2} \cdot x \\
\vdots \\
v_{n} \cdot x
\end{array}\right)
$$

Then

$$
\Sigma V^{T} x=\left(\begin{array}{c}
\sigma_{1} v_{1} \cdot x \\
\sigma_{2} v_{2} \cdot x \\
\vdots \\
\sigma_{r} v_{r} \cdot x \\
0 \\
\vdots \\
0
\end{array}\right)
$$

When we multiply on the left by U, we get the sum of the columns of U, weighted by the components of the above vector, so that

$$
\begin{aligned}
U \Sigma V^{T} x & =\left(\sigma_{1} v_{1} \cdot x\right) \sigma_{1}^{-1} A v_{1}+\cdots+\left(\sigma_{r} v_{r} \cdot x\right) \sigma_{r}^{-1} A v_{r} \\
& =\left(v_{1} \cdot x\right) A v_{1}+\cdots+\left(v_{r} \cdot x\right) A v_{r}
\end{aligned}
$$

Since $A v_{i}=0$ for $i>r$ by Lemma 3.1(a), we can rewrite the above as

$$
\begin{aligned}
U \Sigma V^{T} x & =\left(v_{1} \cdot x\right) A v_{1}+\cdots+\left(v_{n} \cdot x\right) A v_{n} \\
& =A v_{1} v_{1}^{T} x+\cdots+A v_{n} v_{n}^{T} x \\
& =A\left(v_{1} v_{1}^{T}+\cdots v_{n} v_{n}^{T}\right) x \\
& =A x .
\end{aligned}
$$

In the last line, we have used the fact that if $\left\{v_{1}, \ldots, v_{n}\right\}$ is an orthonormal basis for \mathbb{R}^{n}, then $v_{1} v_{1}^{T}+\cdots+v_{n} v_{n}^{T}=I$ (exercise).
Example 3.3. (from Lay's book) Find a singular value decomposition of

$$
A=\left(\begin{array}{ccc}
4 & 11 & 14 \\
8 & 7 & -2
\end{array}\right)
$$

Step 1. We first need to find the eigenvalues of $A^{T} A$. We compute that

$$
A^{T} A=\left(\begin{array}{ccc}
80 & 100 & 40 \\
100 & 170 & 140 \\
40 & 140 & 200
\end{array}\right)
$$

We know that at least one of the eigenvalues is 0 , because this matrix can have rank at most 2. In fact, we can compute that the eigenvalues are $\lambda_{1}=360, \lambda_{2}=90$, and $\lambda_{3}=0$. Thus the singular values of A are $\sigma_{1}=$ $\sqrt{360}=6 \sqrt{10}, \sigma_{2}=\sqrt{90}=3 \sqrt{10}$, and $\sigma_{3}=0$. The matrix Σ in a singular value decomposition of A has to be a 2×3 matrix, so it must be

$$
\Sigma=\left(\begin{array}{ccc}
6 \sqrt{10} & 0 & 0 \\
0 & 3 \sqrt{10} & 0
\end{array}\right)
$$

Step 2. To find a matrix V that we can use, we need to solve for an orthonormal basis of eigenvectors of $A^{T} A$. One possibility is

$$
v_{1}=\left(\begin{array}{l}
1 / 3 \\
2 / 3 \\
2 / 3
\end{array}\right), \quad v_{2}=\left(\begin{array}{c}
-2 / 3 \\
-1 / 3 \\
2 / 3
\end{array}\right), \quad v_{3}=\left(\begin{array}{c}
2 / 3 \\
-2 / 3 \\
1 / 3
\end{array}\right) .
$$

(There are seven other possibilities in which some of the above vectors are multiplied by - 1.) Then V is the matrix with v_{1}, v_{2}, v_{3} as columns, that is

$$
V=\left(\begin{array}{ccc}
1 / 3 & -2 / 3 & 2 / 3 \\
2 / 3 & -1 / 3 & -2 / 3 \\
2 / 3 & 2 / 3 & 1 / 3
\end{array}\right) .
$$

Step 3 . We now find the matrix U. The first column of U is

$$
\sigma_{1}^{-1} A v_{1}=\frac{1}{6 \sqrt{10}}\binom{18}{6}=\binom{3 / \sqrt{10}}{1 / \sqrt{10}} .
$$

The second column of U is

$$
\sigma_{2}^{-1} A v_{2}=\frac{1}{3 \sqrt{10}}\binom{3}{9}=\binom{1 / \sqrt{10}}{-3 / \sqrt{10}} .
$$

Since U is a 2×2 matrix, we do not need any more columns. (If A had only one nonzero singular value, then we would need to add another column to U to make it an orthogonal matrix.) Thus

$$
U=\left(\begin{array}{cc}
3 / \sqrt{10} & 1 / \sqrt{10} \\
1 / \sqrt{10} & -3 / \sqrt{10}
\end{array}\right) .
$$

To conclude, we have found the singular value decomposition

$$
\left(\begin{array}{ccc}
4 & 11 & 14 \\
8 & 7 & -2
\end{array}\right)=\left(\begin{array}{cc}
3 / \sqrt{10} & 1 / \sqrt{10} \\
1 / \sqrt{10} & -3 / \sqrt{10}
\end{array}\right)\left(\begin{array}{ccc}
6 \sqrt{10} & 0 & 0 \\
0 & 3 \sqrt{10} & 0
\end{array}\right)\left(\begin{array}{ccc}
1 / 3 & -2 / 3 & 2 / 3 \\
2 / 3 & -1 / 3 & -2 / 3 \\
2 / 3 & 2 / 3 & 1 / 3
\end{array}\right)^{T} .
$$

4 Applications

Singular values and singular value decompositions are important in analyzing data.

One simple example of this is "rank estimation". Suppose that we have n data points v_{1}, \ldots, v_{n}, all of which live in \mathbb{R}^{m}, where n is much larger than m. Let A be the $m \times n$ matrix with columns v_{1}, \ldots, v_{n}. Suppose the data points satisfy some linear relations, so that v_{1}, \ldots, v_{n}-all lie in an r dimensional subspace of \mathbb{R}^{m}. Then we would expect the matrix A to have rank r. However if the data points are obtained from measurements with errors, then the matrix A will probably have full rank m. But only r of the singular values of A will be large, and the other singular values will be close to zero. Thus one can compute an "approximate rank" of A by counting the number of singular values which are much larger than the others, and one expects the measured matrix A to be close to a matrix A^{\prime} such that the rank of A^{\prime} is the "approximate rank" of A.

For example, consider the matrix

$$
A^{\prime}=\left(\begin{array}{cccc}
1 & 2 & -2 & 3 \\
-4 & 0 & 1 & 2 \\
3 & -2 & 1 & -5
\end{array}\right)
$$

Whe matixx A' has rank 2, because all of its columns are points in the subseace $x_{1}+x_{2}+x_{3}=0$ (but the columns do not all lie in a 1-dimensional subsasace). Now suppose we perturb A^{\prime} to the matrix

$$
A=\left(\begin{array}{cccc}
1.01 & 2.01 & -2 & 2.99 \\
-4.01 & 0.01 & 1.01 & 2.02 \\
3.01 & -1.99 & 1 & -4.98
\end{array}\right)
$$

This matrix now has rank 3 . But the eigenvalues of $A^{T} A$ are

$$
\sigma_{1}^{2} \approx 58.604, \quad \sigma_{2}^{2} \approx 19.3973, \quad \sigma_{3}^{2} \approx 0.00029, \quad \sigma_{4}^{2}=0
$$

Since two of the singular values are much larger than the others, this suggests that A is close to a rank 2 matrix.

For more discussion of how SVD is used to analyze data, see e.g. Lay's book.

5 Exercises (some from Lay's book)

1. (a) Find a singular value decomposition of the matrix $A=\left(\begin{array}{cc}2 & -1 \\ 2 & 2\end{array}\right)$.
(b) Find a unit vector x for which $\|A x\|$ is maximized.
2. Find a singular value decomposition of $\left\lceil A=\left(\begin{array}{ccc}3 & 2 & 2 \\ 2 & 3 & -2\end{array}\right)\right.$.
3. (a) Show that if A is an $n \times n$ symmetric matrix, then the singular values of A are the absolute values of the eigenvalues of A.
(b) Give an example to show that if A is a 2×2 matrix which is not symmetric, then the singular values of A might not equal the absolute values of the eigenvalues of A.
4. Let A be an $m \times n$ matrix with singular values $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n} \geq 0$. Let v_{1} be an eigenvector of $A^{T} A$ with eigenvalue σ_{1}^{2}. Show that σ_{2} is the maximum value of $\|A x\|$ where x ranges over unit vectors in \mathbb{R}^{n} that are orthogonal to v_{1}.
5. Show that if $\left\{v_{1}, \ldots, v_{n}\right\}$ is an orthonormal basis for \mathbb{R}^{n}, then

$$
v_{1} v_{1}^{T}+\cdots+v_{n} v_{n}^{T}=I
$$

6. Let A be an $m \times n$ matrix, and let P be an orthogonal $m \times m$ matrix. Show that $P A$ has the same singular values as A.
gate Bisection Method
1 Find the approximate root of the equation $x^{3}-x-1=0$ by using bisection method.
Solus) Given

$$
\begin{aligned}
& f(x)=x^{3}-x-1 \\
& x=0 ; f(0)=0-0-1=-1-v e \\
& x=1 ; f(1)=1-1-1=-1-v e \\
& x=2 ; f(2)=2^{3}-2-1=8-3 \\
&=5
\end{aligned}
$$

The root lies between 1 and 2

$$
x_{0}=\frac{1+2}{2}=\frac{3}{2}=1.5
$$

S.No	$a($-vel $)$	$b($ tue $)$
1	1	2
2	1	1.5
3	1.25	1.5
4	1.25	1.375
5	1.3125	1.375
6	1.3125	1.3438
7	1.3125	1.3282
8	1.3204	1.3282
9	1.3243	1.3282
10	1.3243	1.3263
11	1.3243	1.3253
12	1.3243	1.3248
13	1.3246	1.3248
14	1.3247	1.3248
15	1.3247	1.3248
	$x 14=x .15=1.3248$	

$$
\begin{aligned}
& x_{n}=\frac{a+b}{2} \\
& 1.5(+v e) \\
& 1.25(-v e) \\
& 1.375(+v e) \\
& 1.3125(-v e) \\
& 1.3438(t v e) \\
& 1.3282(t v e) \\
& 1.3204(-v e) \\
& 1.3243(-v e) \\
& 1.3263(+v e) \\
& 1.3253(+v e) \\
& 1.32 u s(t v e) \\
& 1.3246(-v e) \\
& 1.3247(-v e) \\
& 1.324 s(t v e) \\
& 1.320 s(
\end{aligned}
$$

2 find the approximate root of the equation $\cos x-x_{e}$ e by bisection method
Solve consider

$$
\begin{aligned}
f(x) & =\cos x-x e^{x} \\
x=0 \quad f(0) & =\cos 0-0 e^{0}+v e \\
& =1 \quad \\
x=1 \quad f(1) & =\cos (1)-1 e^{1} \\
& =0.540302305-2.718251828 \\
& =-2.177949 .523 \\
\left\lceil x_{0}\right. &
\end{aligned}
$$

S.no	ate	b(-ve)	$x_{n}=\frac{a+b}{2}$
1	0	1	$0.5(+v e)$
2	0.5	1	$0.75(-v e)]$

$$
x=2 . \quad f(2)=\cos (2)-2 e^{2}
$$

$$
=-0.4161116-2(7.3905)
$$

$$
=-0.4161116-14.77811
$$

$-v e$

$$
\begin{align*}
x=3, f(3) & =\cos (3)-3 c^{3} \\
& =-0.989992496-3(20.08553) \\
& =-0.989992496-60.2566 \\
& =-61.24659
\end{align*}
$$

3. Find the root of the equation $x^{3}-5 x+1=0$ by using biscetion method
solus Given

$$
\begin{aligned}
& f(x)=x^{3}-5 x+1=0 \\
& x=0, f(0)=0-5(0)+1=1+v e \\
& x=1, f(1)=1-5+1=-3+v e \\
& x=2, f(2)=8-5(2)+1=-1-v e \\
& x=3, f(3)=27-15+1=13+v e \\
& x_{0}=\frac{2+3}{2}=\frac{5}{2}=2.5
\end{aligned}
$$

- The root lies between 2 and 3

$$
x_{14}=x_{15}=2.1285
$$

4. Find the real root of the equotion $x \log _{10}^{2}=1.2$ by using bisection method
Solus Griven

$$
\begin{aligned}
& f(x)=x \log _{10}^{x}-1.2 \\
& x=0, f(0)=0 \log _{10}^{0}-1.2=-1.2(-v e) \\
& x=1, \quad \rho(1)=1 \log _{10}^{1}-12 \\
& =0-1 \cdot 2=-1 \cdot 2(-v e) \\
& x=2, \quad f(2)=2 \log _{10}^{2}-1.2 \\
& =2(0.3010)-1.2 \\
& =0.602-1.2 \\
& =-0.598 \quad(-V C) \\
& x=3, f(3)=3 \log _{10} 3-1 \cdot 2 \quad \text { (tve) } \\
& =3(0.477)-1.2 \\
& =1.4 .3136-1.2 \\
& =0.23136 \\
& x_{0}=\frac{2+3}{2}=2.5 \\
& \text { S.No a(-ve) } b(+v e) \quad x_{n}=\frac{a+b}{2} \\
& 3 \\
& 2.5(-v e) \\
& 2.75(\mathrm{tve}) \\
& 2.625 \text { (-ve) } \\
& 2.1875(-v e) \\
& 2.7188(-v e) \\
& 2.7344(-v e) \\
& 2.7422 \text { (tve) } \\
& 2.7383 \text { (-ve) }
\end{aligned}
$$

9	2.7383	2.7422
10	2.7403	2.7422
11	2.7403	2.7413
12	2.7408	2.7413
13	2.7408	2.7411
14	2.7408	2.741
15	2.7408	2.7409
16	2.7408	2.7409
12.	2.7403	2.7408
13	2.7406	2.7408
14	2.7406	2.7407
	$x_{13}=x_{14}=$	2.7407

5. Find the approximate root of the equation $x-\cos x=0$ by using bi-section method
solu) Given

$$
\begin{aligned}
& f(x)=x-\cos x=0 \\
& x=0, f(0)=0-\cos 0=-1 \quad-v e \\
& x=1, f(1)=1-105(1)=1-0.5403 \text { tve } \\
& =0.4597 \\
& x_{0}=\frac{0+1}{2}=0.5 \\
& \text { S.NO a(-ve) } b(+v e) \\
& x_{n}=\frac{a+b}{2} \\
& 0.5 \text { (-ve) }
\end{aligned}
$$

6	0.7188	0.75	0.73441 -ve)
7	0.7344	0.75	0.7422 (tue)
8	0.7344	0.7422	0.7383 (te)
9.	0.7383	0.7422	0.7403 (tue)
10.	0.7383	0.7403	0.7393 (tue)
11.	0.7383	0.7393	0.7388 (-ve)
12	0.7388	0.7393	0.7391 (the)
13	0.7388	0.7391	0.739 (tue)
14.	0.739	0.7391	0.7391 (tue)
15.	0.739	0.7391	0.7391 (tue)

Date

$$
x_{14}=x_{15}=0.7391
$$

Iterative method

1. Find the approximate root of the Equation $x^{3}-x-1=0$ by using iterative method.
Sole Given

$$
\begin{aligned}
& f(x)=x^{3}-x-1 \\
& x=0, f(0)=0-0-1=-1 \\
& x=1, f(1)=1-1-1=-1 \\
& x=2, f(2)=8-2-1=5 \\
& x e
\end{aligned}
$$

\therefore The root lies between 1 and 2

$$
\begin{aligned}
& x_{0}=\frac{1+2}{2}=1.5 \\
& x^{3}-x-1=0 \Rightarrow x^{3}=1+x \\
& x=\sqrt[3]{1+x}=\phi(x)
\end{aligned}
$$

By iterative method.

$$
\begin{aligned}
& x_{1}=\sqrt[3]{1+x_{0}}, \quad x_{0}=1.5 \\
& x_{1}=\sqrt[3]{1+1.5}
\end{aligned}
$$

$$
\begin{aligned}
x_{1} & =\sqrt[3]{2.5} \\
x_{1} & =1.3572 \\
x_{2} & =\sqrt[3]{1+x_{1}} \\
& =\sqrt[3]{1+1.3572} \\
x_{2} & =1.3309 \\
x_{3} & =\sqrt[3]{1+x_{2}} \\
& =\sqrt[3]{1+1.3309} \\
& =\sqrt[3]{2.3309} \\
x_{3} & =1.3259 \\
x_{4} & =\sqrt[3]{1+x_{3}} \\
& =\sqrt[3]{1+1.3259} \\
& =\sqrt[3]{2.32 .59} \\
x_{4} & =1.3249 \\
x_{5} & =\sqrt[3]{1+x_{4}} \\
& =\sqrt[3]{1+1.3249} \\
& =\sqrt[3]{2.3249} \\
x_{5} & =1.3248 \\
x_{6} & =\sqrt[3]{1+x_{5}} \\
& =\sqrt[3]{1+3247} \\
& =\sqrt[3]{2.3247} \\
x_{6} & =1.3247 \\
x_{7} & =1.3 .3247 \\
& =3 \sqrt[3]{1+x_{6}} \\
& =1.37
\end{aligned}
$$

$$
\begin{aligned}
& =\sqrt[3]{2.3247} \\
x_{7} & =1.3247 \\
x_{6} & =x_{7}=1.3247
\end{aligned}
$$

2. Find the approximate root of the equation $x^{3}-5 x+1=0$
solus

$$
\begin{gathered}
f(x)=x^{3}-5 x+1 \\
x=0, f(0)=0-5(0)+1=1+v e \\
x=1, f(1)=1-5+1=-3 \quad-v e \\
x=2, f(2)=8-20+1=-1 \quad-v e \\
x=3, f(3)=27-15+1=13 \quad+v e
\end{gathered}
$$

The root lies between and 3

$$
\begin{array}{r}
x_{0}=\frac{2+3}{2}=\frac{5}{2}=2.5 \\
x^{3}-5 x+1 \Rightarrow 0 \Rightarrow x^{3}=5 x-1 \\
x=\sqrt[3]{5 x-1}=\phi(x)
\end{array}
$$

By iterative method

$$
\begin{aligned}
x_{1} & =\sqrt[3]{5 x_{0}-1} \\
x_{1} & =\sqrt[3]{5(2.5)-1} \\
x_{1} & =327 x_{1} 3 \sqrt{12.5-1} \\
x_{1} & =\sqrt[3]{11.5} \\
x_{1} & =2.2572 \\
x_{2} & =\sqrt[3]{5 x_{1}-1} \\
& =\sqrt[3]{5(2.2572)-1} \\
& =3 \sqrt{11.286-1} \\
& =3 \sqrt{10.286} \\
x_{2} & =2.1748
\end{aligned}
$$

$$
\begin{aligned}
& x_{3}=3 \sqrt{5 x_{2}}-1 \\
& =3 \sqrt{5(2.1748)-1} \\
& =3 \sqrt{10 \cdot 874-1} \\
& =\sqrt[3]{9.874} \\
& x_{3}=2.1453 \\
& x_{4}=\sqrt[3]{5 x_{3}-1} \\
& =3 \sqrt{5(2 \cdot 1453)-1} \\
& = 3 \longdiv { 1 0 . 7 2 6 5 - 1 } \\
& =3 \sqrt{9.7265} \\
& x_{4}=2.1346 \\
& x_{5}=3 \sqrt{5 x_{4}-1} \\
& =\sqrt[3]{5(2.1346)-1} \\
& =3 \sqrt{10.673-1} \\
& = 3 \longdiv { 9 . 6 7 3 } \\
& x_{5}=2.1307 \\
& x_{6}=3 \sqrt{5 x_{5}-1} \\
& =3 \sqrt{5(2.1307)-1} \\
& =3 \sqrt{10.6535-1} \\
& =3 \sqrt{9.6535} \\
& x_{6}=2.1293 \\
& x_{7}=3 \sqrt{5 x_{6}-1} \\
& =3 \sqrt{5(2.1293)-1} \\
& =3 \sqrt{9.6465} \\
& =2.1287
\end{aligned}
$$

$$
\begin{aligned}
x_{8} & =3 \sqrt{5 x_{7}-1} \\
& =3 \sqrt{5(2.1287)-1} \\
& =3 \sqrt{9.6435} \\
x_{8} & =2 \cdot 1285 \\
x_{9} & =3 \sqrt{5 x_{8}-1} \\
& =3 \sqrt{5(2 \cdot 1285)-1} \\
& =3 \sqrt{9.6425} \\
x_{9} & =2 \cdot 1284 \\
x_{10} & =3 \sqrt{5 x_{9}-1} \\
& =3 \sqrt{5(9.1284)-1} \\
& =3 \sqrt{9.642} \\
x_{10} & =2.1284 \\
x_{9} & =x_{10}
\end{aligned}=2.1284 .
$$

3. find the approximate root of the equation $\cos x=3 x-1$

Solus

$$
\begin{aligned}
f(x) & =\cos x-3 x+1 \\
x=0, f(0) & =\cos 0-3(0)+1 \quad \text { the } \\
& =1+1=2 \\
x=1, \quad f(1) & =\cos (1)-371 \quad \text {-ve } \\
& =0.54030-3+1 \\
& =-1.459697
\end{aligned}
$$

The root lies between 0 and 1

$$
\begin{aligned}
x_{0} & =\frac{1+0}{2}=\frac{1}{2}=0.5 \\
\cos x-3 x+1 & =0 \Rightarrow \cos x+1=3 x \\
x & =\frac{1+\cos x}{3}=\phi(x)
\end{aligned}
$$

By iterative method

$$
\left.\begin{array}{rl}
x_{1} & =\frac{1+\cos x_{0}}{3} \\
x_{1} & =\frac{1+\cos (0.5)}{3} \\
x_{1} & =\frac{0.6259}{x_{2}}
\end{array}=\frac{1+\cos x_{1}}{3}\right]\left(\begin{array}{l}
3 \\
\\
\end{array}\right.
$$

$$
\begin{aligned}
& =\frac{1+\cos (0.6071)}{3} \\
x_{6} & =0.6071 \\
x_{5} & =x_{6}
\end{aligned}=0.6071
$$

4. Find the approximate value of $x^{3}+x^{2} 1=0$

$$
\begin{aligned}
& f(x)=x^{3}+x^{2}-1 \\
& x=0, f(0)=0+0-1=-1 \quad-v e \\
& x=1, f(1)=1+1-1=+1+v e
\end{aligned}
$$

The root lies between oand I

$$
\begin{gathered}
x_{0}=\frac{0+1}{2}=\frac{1}{2}=0.5 \\
{\left[x^{3}+x^{2}+1=0\right.} \\
x^{2}(x+| | 1)=0 \\
\left.x^{2} 1=x^{3}+x^{2}\right]
\end{gathered}
$$

$$
\begin{gathered}
x^{3}+x^{2}-1=0 \\
x^{3}+x^{2}=1 \\
x^{2}(x+1)=1 \\
x^{2}=\frac{1}{1+x}
\end{gathered}
$$

By iteration method

$$
\begin{aligned}
& x_{1}=\frac{1}{\sqrt{1+x_{0}}}=\frac{1}{\sqrt{1+0.5}}=\frac{1}{\sqrt{1.5}}=\frac{1+x}{1.224744871}=0.8169 \\
&=\frac{1}{\sqrt{1+x_{1}}}=\frac{1}{\sqrt{1+0.8165}}=\frac{1}{\sqrt{1.8165}}=0.749 \\
& x_{2}=\frac{1}{\sqrt{1+x_{2}}}=\frac{1}{\sqrt{1+0.742}}=\frac{1}{\sqrt{1.742}}=0.7577 \\
& x_{3}=\frac{1}{\sqrt{1+x_{3}}}=\frac{1}{x_{4}}=\frac{1}{\sqrt{1+0.7577}}=\frac{1}{\sqrt{1.7577}}=0.7443 \\
& x_{5}=\frac{1}{\sqrt{1+x_{4}}}=\frac{1+0.7543}{\sqrt{1+0}}=\frac{1}{\sqrt{1.7543}}=0.7550
\end{aligned}
$$

$$
x_{6}=\frac{1}{\sqrt{1+x_{5}}}=\frac{1}{\sqrt{1+0.7550}}=\frac{1}{\sqrt{1.7550}}=0.755
$$

gills ind a root near 3.8 for the equation $2 x-\log _{10} x=7$ correct to 4 decimal places. by the iterative method
sole) $f(x)=2 x-\log _{10} x-7$
Given $x_{0}=3.8$

$$
\begin{aligned}
2 x-\log _{10} x & =7 \\
2 x & =\log _{10}^{x}+7 \\
x & =\frac{1}{2}\left[\log _{10}^{x}+7\right]=\phi(x)
\end{aligned}
$$

By iterative method

$$
\begin{aligned}
& x_{1}=\frac{1}{2}\left[\log _{10} x_{0}+7\right] \\
& x_{1}=\frac{1}{2}\left[\log _{10}(3.8)^{\prime}+7\right] \\
&=3.789891798 \\
& x_{1}=3.7899 \\
& x_{2}=\frac{1}{2}\left[\log _{10} x_{1}+7\right] \\
&=\frac{1}{2}\left[\log _{10}(3.7899)+7\right] \\
&=3.789313875 \\
&=3.7893 \\
& x_{2} \\
& x_{3}=\frac{1}{2}\left[\log _{10} x_{2}+7\right] \\
&=\frac{1}{2}\left[\log _{10}(3.7893)+7\right] \\
&=3.789279495 \\
& x_{3}=3.7893 \\
& x_{2}=x_{3} .7893
\end{aligned}
$$

6. Find the approximate root of the equation $\tan x=x$ by using iterative method

$$
\begin{aligned}
f(x) & =\tan x-x \\
x=0, f(0) & =\tan 0-0=0 \quad+v e \\
x=1, f(1) & =\tan 1-1=0.557407724 \quad \text { ave } \\
x=2, f(2) & =\tan 2-2=-4.185039 \quad-v e
\end{aligned}
$$

The root lies between $1 \wedge$ i

$$
\begin{array}{rlr}
x_{0} & =\frac{1+2}{2}=\frac{3}{2}=1.5 \\
& \tan \cdot x=x=\phi(x) \\
\begin{aligned}
x_{1} & =\tan x_{0}=\tan (1.5) \quad x=\tan ^{-1}(x) \\
& =14.10141995 \\
& =14.1014 \\
x_{2} & \left.=\tan x_{1}\right]
\end{aligned} \quad \begin{aligned}
x_{1} & =\tan ^{-1} x_{0} \\
& =\tan ^{-1}(1.5) \\
& =0.982793723 \\
x_{2} & =\tan ^{-1}\left(x_{1}\right) \\
& =\tan ^{-1}(0.9828) \\
& =0.776723779) \\
x_{2} & =0.77667 \\
x_{3} & =\tan ^{-1}\left(x_{2}\right) \\
& =\tan ^{-1}(0.7767) \\
& =0.660371299 \\
x_{3} & =0.6604 \\
x_{4} & =\tan ^{-1}\left(x_{3}\right) \\
& =\tan ^{-1}(0.6604) \\
& =0.583651584 \\
x_{4} & =0.5837
\end{aligned}
\end{array}
$$

$$
\begin{aligned}
& x_{5}=\tan ^{-1}\left(x_{u}\right) \\
& =\tan ^{-1}(0.5837) \\
& =0.528347979 \\
& x_{5}=0.5283 \\
& x_{6}=\tan ^{-1}\left(x_{5}\right) \\
& =\tan ^{-1}(0.5283) \\
& =0.486030454 \\
& x_{6}=0.4860 \\
& x_{7}=\tan ^{-1}\left(x_{6}\right) \\
& =\tan ^{-1}(0.4860) \\
& =0.432385012 \\
& x_{7}=0.4524 \\
& x_{8}=\tan ^{-1}\left(x_{7}\right) \\
& =\tan ^{-1}(0.4524) \\
& =0.424847974 \\
& x_{8}=0.4248 \\
& x_{9}=\operatorname{ban}^{-1}\left(x_{8}\right) \\
& =\tan ^{-1}(0.4248) \\
& =0.401701233 \\
& x_{9}=0.4017 \\
& x_{10}=\tan ^{-1}\left(x_{9}\right) \\
& =\tan ^{-1}(0.4017) \\
& =0.381971034 \\
& x_{10}=0.382 \\
& x_{11}=\tan ^{-1}\left(x_{10}\right) \\
& =\tan ^{-1}(0.382) \\
& =0.364893489
\end{aligned}
$$

$$
\begin{aligned}
& =0.3649 \\
& x_{12}=\tan ^{-1}\left(x_{11}\right) \\
& =\tan ^{-1}(0.3649) \\
& =0.349886608 \\
& x_{12}=0.3499 \\
& x_{13}=\tan ^{-1}\left(x_{12}\right) \\
& =\tan ^{-1}(0.3499) \\
& =0.336585729 \\
& x_{13}=0.3366 \\
& x_{14}=\tan ^{-1}(0.3366)=\tan ^{-1}\left(x_{13}\right) \\
& =0.324687667 \\
& x_{14}=0.3247 \\
& x_{15}=\tan ^{-1}(x / u) \\
& =\tan ^{-1}(0.3247) \\
& =0.3139 .60535 \\
& x_{15}=0.3140 \\
& x / 6=\tan ^{-1}(x / 5) \\
& =\tan ^{-1}(0.3140) \\
& =0.304250832 \\
& x_{16}=0.3043 \\
& x_{17}=\tan ^{-1}\left(\alpha_{16}\right) \\
& =\tan ^{-1}(0.3043) \\
& =0.295397064 \\
& x_{17}=0.2954 \\
& x_{18}=\tan ^{-1}\left(x_{17}\right) \\
& =\tan ^{-1}(0.2954) \\
& =0.287231286 \\
& x_{18}=0.2872 .
\end{aligned}
$$

$$
\begin{aligned}
x_{19} & =\tan ^{-1}\left(x_{18}\right) \\
& =\tan ^{-1}(0.2872) \\
& =0.279672704 \\
x_{19} & =0.2797 \\
x_{20} & =\tan ^{-1}\left(x_{19}\right) \\
& =\tan ^{-1}(0.2797) \\
& =0.272730491
\end{aligned}
$$

$$
x_{20}=0.2727
$$

$$
x_{2 r}=\tan ^{-1}\left(x_{20}\right)
$$

$$
=\tan ^{-1}(0.2727)
$$

$$
=0.266226664
$$

$$
x_{21}=0.2662
$$

$$
x_{22}=\tan ^{-1}\left(x_{21}\right)
$$

$$
=\tan ^{-1}(0.2662)
$$

$$
=0.260166056
$$

$$
x_{22}=0.2602
$$

$$
\begin{aligned}
x_{22} & =\tan ^{-1}\left(x_{22}\right) \\
x_{23} & =\tan ^{-1}(0.2602) \\
& =545538
\end{aligned}
$$

$$
\begin{aligned}
& =\tan \\
& =0.25455385
\end{aligned}
$$

$$
\begin{aligned}
x_{23} & =0.2546 \\
x_{24} & =\tan ^{-1}\left(x_{23}\right) \\
& =\tan ^{-1}(0.2546) \\
& =0.249303367
\end{aligned}
$$

$$
\begin{aligned}
x_{24} & =0.2493 \\
x_{25} & =\tan ^{-1}\left(x_{24}\right) \\
& =\tan ^{-1}(0.2493) \\
& =0.244319731
\end{aligned}
$$

$$
\begin{aligned}
& x_{25}=0.2443 \\
& x_{26}=\tan ^{-1}\left(x_{25}\right) \\
& =\tan ^{-1}(0.2443) \\
& =0.239606804 \\
& x_{26}=0.2396 \\
& x_{27}=\tan ^{-1}\left(x_{26}\right) \text {. } \\
& =\tan ^{-1}(2396) \\
& x_{27}=0.2352 \\
& x_{28}=\tan ^{-1}\left(x_{27}\right) \\
& =\tan ^{-1}(0.2352) \\
& x_{28}=0.231 \\
& x_{29}=\tan ^{-1}\left(x_{28}\right) \\
& =\tan ^{-1}(0.231) \\
& x_{29}=0.2270 \\
& x_{30}=\tan ^{-1}\left(x_{29}\right) \\
& =\tan ^{-1}(0.2270) \\
& x_{30}=0.2232 \\
& x_{31}=\tan ^{-1}\left(x_{30}\right) \\
& =\tan ^{-1}(0.2232) \\
& x_{31}=0.2196 \\
& x_{32}=\tan ^{-1}\left(x_{31}\right) \\
& =\tan ^{-1}(0.2196) \\
& x_{32}=0.2162 \\
& x_{33}=\tan ^{-1}\left(x_{32}\right) \\
& =\tan ^{-1}(0.2162)^{x u q}=0.1748
\end{aligned}
$$

$$
\left.\begin{array}{rlrl}
& =0.2129 & & =x_{50} \\
x_{34} & =\tan ^{-1}\left(x_{149}\left(x_{33}\right)\right. & & \\
& =\tan ^{-1}(0.21708) \\
& =0.2098 & & x_{50}
\end{array}\right)
$$

$$
\begin{aligned}
& x_{58}=\tan ^{-1}\left(x_{57}\right) \\
& x_{67}=\tan ^{-1}\left(x_{66}\right) \\
& =\tan ^{-1}(0.1622) \\
& x_{58}=0.1608 \\
& 267=0.1496 \\
& x_{59}=\tan ^{-1}\left(x_{58}\right) \\
& =\tan ^{-1}(0.1608) \\
& x_{59}=0.1594 \\
& x_{60}=\tan ^{-1}\left(x_{59}\right) \\
& =\tan ^{-1}(0.1594) \\
& x_{60}=0.1587 \\
& x_{61}=\tan ^{-1}\left(x_{61}\right) \\
& =\tan ^{-1}(0.1587) \\
& x_{61}=0.1568 \\
& x_{62}=\tan ^{-1}\left(x_{61}\right) \\
& =\tan ^{=}=1(0.1568) \\
& x_{62}=0.1555 \\
& x_{63}=\tan ^{-1}\left(x_{62}\right) \\
& =\tan ^{-1}(0.1555) \\
& x_{63}=0.1543 . \\
& x_{64}=\tan ^{-1}\left(x_{63}\right) \\
& =\tan ^{-1}(0.1543) \\
& x_{64}=0.1531 \\
& x_{65}=\tan ^{-1}(x 6 u) \\
& =\tan ^{-1}(0.1531) \\
& x_{65}=0.1519 \\
& x_{66}=\tan ^{-1}\left(x_{65}\right) \\
& =\tan ^{-1}(0.1519) \\
& x_{66}=0.1507
\end{aligned}
$$

$$
\begin{aligned}
& x_{76}=\tan ^{-1}\left(x_{76}\right) \\
& =\tan ^{-1}(0.1414) \\
& x 96=0.1405 \\
& x_{77}=\tan ^{-1}\left(x_{76}\right) \\
& =\tan ^{-1}(0.1405) \\
& x_{77}=0.1896 \\
& x_{78}=\tan ^{-1}(x 77) \\
& =\tan ^{-1}(0.1396) \\
& x_{78}=b .1387 \\
& x_{79}=\tan ^{-1}\left(x_{78}\right) \\
& =\tan ^{-1}(0.1387) \\
& x 89=0.1378 \\
& x 80=\tan ^{-1}(x 79) \\
& =\tan ^{-1}(0.1378) \\
& x_{80}=0.1369 \\
& x_{81}=\tan ^{-1}\left(x_{80}\right) \\
& =\tan ^{-1}(0.1369) \\
& x_{81}=0.1361 \\
& x_{8_{2}}=\tan ^{-1}\left(x_{81}\right) \\
& =\tan ^{-1}(0.1361) \\
& x_{82}=0.1353 \\
& y_{83}=\tan ^{-1}(x 82) \\
& =\tan ^{-1}(0.1353) \\
& 283=0.1345 \\
& x_{84}=\tan ^{-1}(x 83) \\
& =\tan ^{-1}(0.1345) \\
& =0.1337 \\
& x_{85}=\tan ^{-1}\left(x_{84}\right) \\
& =\tan ^{-1}(0.1337) \\
& x_{85}=0.1329 \\
& x_{86}=\tan ^{-1}\left(x_{85}\right) \\
& =\tan ^{-1}(0.1329) \\
& x_{86}=0.1321 \\
& x_{87}=\tan ^{-1}(x 86) \\
& =\tan ^{-1}(0.132 v) \\
& x_{87}=0.1313 \\
& 288=\tan ^{-1}\left(x_{87}\right) \\
& =\tan ^{-1}(0.1313) \\
& x_{88}=0.1306 \\
& x_{89}=\tan ^{-1}(x 88) \\
& =\tan ^{-1}(0.1306) \\
& x_{89}=0.1299 \\
& \begin{aligned}
x_{90} & =\tan ^{-1}\left(x_{89}\right) \\
& =\tan ^{-1}(0.1299) \\
x_{90} & =0.1292 \\
x_{91} & =\tan ^{-1}\left(x_{90}\right) \\
& =\tan ^{-1}(0.1292) \\
& =0.1285
\end{aligned} \\
& x_{92}=\tan ^{-1}\left(x_{91}\right) \\
& =\tan ^{-1}(0.1285) \\
& x_{92}=0.1278 \\
& x_{93}=\tan ^{-1}(92) \\
& =\tan ^{-1}(0.1278) \\
& x_{93}=0.1271
\end{aligned}
$$

$$
\begin{aligned}
& x_{94}=\tan ^{-1}\left(x_{93}\right) \\
&=\tan ^{-1}(0.1271) \\
& x_{94}=0.1264 \\
& x_{95}=\tan ^{-1}\left(x_{94}\right) \\
&=\tan ^{-1}(0.1264) \\
& x_{95}=0.1257 \\
& x_{96}=\tan ^{-1}\left(x_{95}\right) \\
&=\tan ^{-1}(0.1257) \\
& x_{96}=0.1250 \\
& x_{97}=\tan ^{-1}\left(x_{96}\right) \\
&=\tan ^{-1}(0.1250) \\
& x_{97}=0.1244 \\
& x_{98}=\tan ^{-1}\left(x_{97}\right) \\
&=\tan ^{-1}(0.1244) \\
&=0.1238 \\
& x_{98}=\tan ^{-1}(0.1232) \\
& x_{99}=\tan ^{-1}(98) \\
& x_{99}=\tan ^{-1}(0.1238) \\
&=0.1232 \\
& x_{100}=0.1226 \\
& \tan ^{-1}\left(x_{99}\right) \\
&=0 .
\end{aligned}
$$

Dote 1 . Solutions of Algebraic
13/k/18
Transcendental Equations.
Since the given equation having trignometric functions or logarithmic functions or exponent functions, that type of Equations are called 'transcendental 'equations Ex:

$$
\text { 1. } x=e^{-x} \quad 3 \cdot x=\sin x+1
$$

2. $x+1=\log x$

In the given linear equation having ' x ' is called algebraic equation.
Ex:

1. $x^{2}+x+1=0$
2. $x^{3}-2 x^{2}+x+1=0$
\Rightarrow Newton - Rathson Method (or) Newton's Method:
Consider $f(x)=0$ be the given Curve and x takes the values $x_{0}, x_{1}, x_{2} \ldots x_{n}$, and h is the common difference then $x_{1}=x_{0}+h \rightarrow$ (1)
By taylor's Series

$$
\begin{aligned}
& \text { By taylor's Series } \\
& f(x+h)=f(x)+h \cdot f^{\prime}(x)+\frac{h^{2}}{21} f^{\prime \prime}(x)+\frac{h^{3}}{3!} f^{\prime \prime \prime}(x)+\ldots
\end{aligned}
$$

Since ' h ' is very small quantity and $h^{2}, h^{3}, h^{4}, \ldots$ are very small [negligible]
\therefore In the above Equation we diminate the product of h^{2}, h^{3}, h^{4}, \ldots terms. then $f(x+h)=f(x)+h f^{\prime}(x)$
If. $x=x_{1}$ is the solution of the given equation $f\left(x_{1}\right)=0$

$$
\begin{aligned}
& \Rightarrow f\left(x_{0}+h\right)=0 \\
& \Rightarrow f\left(x_{0}+h\right)=f\left(x_{0}\right)+h f^{\prime}\left(x_{0}\right) \\
& \Rightarrow h \cdot f^{\prime}\left(x_{0}\right)=-f\left(x_{0}\right)
\end{aligned}
$$

$$
\begin{equation*}
\text { then } h=-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \text {. } \tag{2}
\end{equation*}
$$

From (1) 1 (2)

$$
\begin{aligned}
& x_{1}=x_{0}+\left[\frac{-f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}\right] \\
& x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \quad \text { similarly. } \\
& x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{0}\right)} \quad \therefore x_{3}=x_{2}-\frac{f\left(x_{2}\right)}{f^{\prime}\left(x_{2}\right)} \\
& \therefore x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
\end{aligned}
$$

The above equation is called "Newton's Formulae".
Geometrical Representation of Newton's formulae
Consider the curve $y=f(x)$ be passing through the points $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right)$.
The slope of the curve $m=\frac{d y}{d x}=f^{\prime}(x)$

$$
\begin{aligned}
& \text { It passing } \quad f^{\prime}\left(x_{0}\right) \rightarrow(1) \\
& \text { At }\left(x_{0}, y_{0}\right) \quad m=\text { pose (or) Curve passing }
\end{aligned}
$$

It passing The given line (or) curve passing through $\left(x_{0}, y_{0}\right)$ and slope $m=f^{\prime}\left(x_{0}\right)$ then equation to the line

$$
\begin{aligned}
y-y_{0} & =m\left(x-x_{0}\right) \\
\Rightarrow y-y_{0} & =f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) \\
& x \text {-axis then }
\end{aligned}
$$

it intersect x-axis then its y-co-ordinate is zero.

$$
\begin{aligned}
& \therefore 0-y_{0}=f^{\prime}\left(x_{0}\right)\left(x_{1}-x_{0}\right) \\
&-y_{0}=f^{\prime}\left(x_{0}\right)\left(x_{1}-x_{0}\right) \\
& x_{1}-x_{0}=\frac{-y_{0}}{f^{\prime}\left(x_{0}\right)} \\
& x_{1}=x_{0}-\frac{y_{0}}{f^{\prime}\left(x_{0}\right)}, y_{0}=f\left(x_{0}\right) \\
& \therefore x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
\end{aligned}
$$

similarly $x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)} ; x_{3}=x_{2}-\frac{f\left(x_{2}\right)}{f^{\prime}\left(x_{2}\right)}$

$$
\therefore x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

1. Using Newtons Rathson method, find the Feal root of the situation $3 x=\cos x+1$ correct to four decimal places

Solus)

$$
\begin{aligned}
3 x= & (02 x+1) \\
f(x) & =3 x-\cos x-1 \\
x=0 \Rightarrow f(0) & =3(0)-\cos 0-1 \\
& =0-1-1=-2-v e \\
x=1 \Rightarrow f(1) & =3(1)-\cos -1 \\
& =3-0.9998-1+v e \\
x_{0}=\frac{a+b}{2} & =\frac{0+1}{2}=0.5 \\
f(x) & =3 x-\cos x-1 \\
f^{\prime}(x) & =\frac{d}{d x}(3 x-\cos x-1) \\
& =3-(-\sin x) \\
& =3+\sin x
\end{aligned}
$$

By Newton's Method

$$
\begin{aligned}
x_{1} & =\frac{x_{0}-f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \\
& =x_{0}-\frac{\left(3 x_{0}-\cos x_{0}-1\right)}{3+\sin x_{0}} \\
& =\frac{x_{0}\left(3+\sin x_{0}\right)-\left(3 x_{0}-\cos x_{0}-1\right)}{3+\sin x_{0}} \\
& =\frac{3 x_{0}+3 \sin x_{0}-3 x_{0}+\cos x_{0}+1}{3+\sin x_{0}}
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}=\frac{x_{0} \sin x_{0}+\cos x_{0}+1}{3+\sin x_{0}} \\
& x_{1}=\frac{0.5 \sin (0.5)+\cos (0.5)+1}{3+\sin (0.5)} \\
& =\frac{2.11729533}{3.4794255386} \\
& =0.6085186498^{\circ} \\
& x_{1}=0.66620 .6085 \\
& x_{2}=\frac{x_{1} \sin x_{1}+\cos x_{1}+1}{3+\sin x_{1}} \\
& =\frac{(0.6085) \sin (0.6085)+\cos (0.6085)+1}{3+\sin (0.6085)} \\
& =\frac{2.1956929118}{3.6146956091}\left[=\frac{0.6085[0.010620128]+0.999943604 t 1}{3+0.010620128}\right. \\
& =\frac{0.006462348407+0.999943604+1}{3+0.010620128} \\
& \left.=\frac{2.006405952}{3.010620128}\right] \\
& x_{2}=0.6071087 \\
& x_{3}=\frac{x_{2} \sin x_{2}+\cos x_{2}+1}{3+\sin x_{2}} \\
& =\frac{(0.6071) \sin (0.6071)+\cos (0.6071)+1}{3+\sin (0.6071)} \\
& =\frac{0.6071\left[\begin{array}{l}
0.570488075 \\
0.0+059569562
\end{array}\right]+0.821305884+1}{3+0.570488075} \\
& =\frac{0.34634331+1+0.821305884}{3.570488075}=\frac{2.167649194}{3.570488075} \\
& =0.607101647
\end{aligned}
$$

$$
x_{2}=x_{3}=0.6071
$$

The approximate root of the given equation is 0.6071
2. find the real root of the equation $x=e^{-x}$ by using Newton Rathson method
Solus)

$$
\begin{aligned}
& x_{1}=x_{0}-f \\
& x=0 \Rightarrow f(x)=0-e^{-0}=-1 \quad-v e \\
& x=1 \Rightarrow f(1)=1-e^{-1}=0.6321+v e \\
& x_{0}=\frac{a+b}{2}=\frac{0+1}{2}=0.5 \\
& f(x)= \\
& f^{\prime}(x)=e^{-x} \\
& =\frac{d}{d x}\left[x-e^{-x}\right] \\
& \\
& =1-e^{-x}(-1) \\
&
\end{aligned}
$$

By Newton's method

$$
\begin{aligned}
& x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \\
&=x_{0}-\frac{\left(x_{0}-e^{-x_{0}}\right)}{1+e^{-x_{0}}} \\
&=\frac{x_{0}\left(1+e^{-x_{0}}\right)-\left(x_{0}-e^{-x_{0}}\right)}{1+e^{-x_{0}}} \\
&=\frac{x_{0}+x_{0} e^{-x_{0}}-x_{0}+e^{-x_{0}}}{1+e^{-x_{0}}} \\
& x_{1}=\frac{e^{-x_{0}\left(x_{0}+1\right)}}{1+e^{-x_{0}}} \\
& x_{1}=0.5 \\
&=\frac{e^{-0.5}(0.5+1)}{1+e^{-0.5}} \\
&=\frac{0.606530659(1.5)}{1+0.606530659}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{0.909795988}{1.606530659} \\
& =\frac{0.5663110031}{x_{1}}
\end{aligned}=\frac{0.5663}{x_{2}}=\frac{e^{-x_{1}\left(x_{1}+1\right)}}{1+e^{-x_{1}}}
$$

A ode find the approximate root of the equation $x^{3}-5 x+3=0$ by
(18118 and 3. using vecutons method.

Solus Given

$$
\begin{aligned}
& x^{3}-5 x+3=0 \\
& f(x)=x^{3}-5 x+3 \\
& x=0 \Rightarrow 0-5(0)+3=3+v e \\
& x=1 \Rightarrow 9-5(1)+3=-1-v e \\
& x=2 \Rightarrow 2^{3}-5(2)+3=8-10+3=1+v e \\
& x_{0}=\frac{a+b}{2}=\frac{1+2}{2}=\frac{3}{2}=1.5 \quad ; a=1, b=2
\end{aligned}
$$

Not lies between 1 and 2

$$
\begin{aligned}
& f(x)=x^{3}-5 x+3 \\
& f^{\prime}(x)=3 x^{2}-5
\end{aligned}
$$

By Newton's method

$$
\begin{aligned}
x_{1} & =x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \\
& =x_{0}-\frac{\left(x_{0}^{3}-5 x_{0}+3\right]}{3 x_{0}^{2}-5} \\
& =\frac{x_{0}\left(3 x_{0}^{2}-5\right)-\left(x_{0}^{3}-5 x_{0}+3\right)}{3 x_{0}^{2}-5} \\
& =\frac{3 x_{0}^{3}-5 x_{0}-x_{0}^{3}+5 x_{0}-3}{3 x_{0}^{2}-5} \\
x_{1} & =\frac{2 x_{0}^{3}-3}{3 x_{0}^{2}-5} x_{0}=1.5 \\
x_{1} & =\frac{2(1.5)^{3}-3}{3(1.5)^{2}-5}=\frac{2(3.375)-3}{3(2.25)-5}=\frac{6.75-3}{6.75-5} \\
& =\frac{3.75}{1.75}=2.142857143 \\
x_{1} & =2.1429
\end{aligned}
$$

$$
\begin{aligned}
& x_{2}=\frac{2 x_{1}^{3}-3}{3 x_{1}^{2}-5} \quad x_{1}=2.1429 \\
& x_{2}=\frac{2(2.1429)^{3}-3}{3(2.1429)^{2}-5}=\frac{2(9.840240537)-3}{3(4.59202041)-5} \\
& =\frac{19.680 .48107-3}{13.77606123-5}=\frac{16.68048107}{8.77606123} \\
& =1.900679659 \\
& x_{2}=1.9007 \\
& x_{3}=\frac{2 x_{2}^{3}-3}{3 x_{2}^{2}-5} \quad x_{2}=1.9007 \\
& =\frac{2(1.9007)^{3}-3}{3(1.9007)^{2}-5}=\frac{2(6.866583793)-3}{3(3.61266049)-5} \\
& =\frac{13.73316759-3}{10.83798147-5}=\frac{10.73316759}{5.83798147} \\
& =1.838506622 \\
& x_{3}=1.8385 \\
& x_{4}=\frac{2 x_{3}^{3-3}}{3 x_{3}^{2}-5} \\
& =\frac{2(1.8385)^{3}-3}{3(1.8385)^{2}-5}=\frac{2(6.214281217)-3}{3(3.38008225)-5} \\
& =\frac{12.42856243-3}{10.14024675-5}=\frac{9.428562433}{5.14024675} \\
& =1.834262613 \\
& x_{4}=1.8343 \\
& x_{5}=\frac{2 x_{4}{ }^{3}-3}{2 x_{4}^{2}-5}=\frac{2(1.8343)^{3}-3}{3(1.8343)^{2}-5} \\
& =\frac{2(6.1717894)-3}{3(3.36465649)-5}=\frac{12.3435 .788-3}{10.09396947-5}
\end{aligned}
$$

$$
\begin{aligned}
& =9 \cdot 1265 \\
& =\frac{9.3435788}{5.09396947} \\
& =1.834243188 \\
& =1.8342 \\
x_{6} & =\frac{2 x 5^{3}-3}{375^{2}-5} \\
& =\frac{2(1.8342)^{3}-3}{3(1.8342)^{2}-5} \\
& =\frac{2(6.170780058)-3}{3(3.36428964)-5} \\
& =\frac{12.34156012-3}{10.09286892-5} \\
& =\frac{9.341560116}{5.09286892} \\
& =1.834243186 \\
& =1.8342
\end{aligned}
$$

The approximate roots $x_{5}=x_{6}=1.8342$
4. find the real root of the equation $x^{3}-2 x-5=0$ by using Newton's method.
Solus Given Equation

$$
\begin{aligned}
& x^{3}-2 x-5=0 \\
& f(x)=x^{3}-2 x-5 \\
& x=0 \Rightarrow 0-2(0)-5=-5-v e \\
& x=1 \Rightarrow 1-2(1)-5=-6-v e \\
& x=2 \Rightarrow 2^{3}-2(2)-5=8-4-5=-1-v e \\
& x=3 \Rightarrow 3^{3}-2(3)-5=27-6-5=16+v e \\
& x_{0}=\frac{a+b}{2}=\frac{2+3}{2}=\frac{5}{2}=2.5 \\
& f(x)=x^{3}-2 x-5 \\
& f^{\prime}(x)=3 x^{2}-2
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \\
& =x_{0}-\frac{\left[x_{0}^{3}-2 x_{0}-5\right]}{\left(3 x_{0}^{2}-2\right)} \\
& =\frac{x_{0}\left(3 x_{0}^{2}-2\right)-\left[x_{0}^{3}-2 x_{0}-5\right]}{3 x_{0}^{2}-2} \\
& =\frac{3 x_{0}^{3}-2 x_{0}-x_{0}^{3}+2 x_{0}+5}{3 x_{0}^{2}-2} \\
& x_{1}=\frac{2 x_{0}^{3}+5}{3 x_{0}^{2}-2} \\
& x_{1}=\frac{2(2.5)^{3}+5}{3(2.5)^{2}-2} \\
& =\frac{2(15.625)+5}{3(6.25)-2}=\frac{31.25+5}{18.75-2} \\
& =\frac{36.25}{16.75}=2.164179104 \\
& x_{1}=2.1642 \\
& x_{2}=\frac{2 x_{1}^{3}+5}{3 x_{1}^{2}-2}=\frac{2(2.1642)^{3}+5}{3(2.1642)^{2}-2} \\
& =\frac{2(10.1365969 u)+5}{3(4.6837616 u)-2} \\
& =\frac{20.27319388+5}{14.05128492-2} \\
& =\frac{25.27319388}{12.05128492} \\
& =2.097136865 \\
& =2.0971
\end{aligned}
$$

$$
\begin{aligned}
& x_{3}=\frac{2 x_{2}^{3}+5}{3 x_{2}^{2}-2} \\
& =\frac{2(2.0971)^{3}+5}{3(2.0971)^{2}-2} \\
& =\frac{2(9.222685959)+5}{3(4.39782841)-2} \\
& =\frac{18.44537192+5}{13.19348523-2} \\
& =\frac{23.44537192}{11.19348523} \\
& =2.094555131 \\
& x_{3}=2.0946 \\
& \begin{aligned}
x_{u} & =\frac{2 x_{3}^{3}+5}{3 x_{3}^{2}-2} \\
& =\frac{2(2.0946)^{3}+5}{3(2.0946)^{2}-2}
\end{aligned} \\
& =\frac{2(9.189741551)+5}{3(4.38734916)-2} \\
& =\frac{18 \cdot 3794831+5}{13 \cdot 16204748-2} \\
& =\frac{23.3794831}{11.16204748} \\
& =2.094551483 \\
& x_{4}=2.0946
\end{aligned}
$$

The approximate roots are $x_{3}=x_{4}=2.0946$
H.w find the real root of the equation $x^{4}-x-10=0$ 5. by which is near to $x=2$.

Solve) Given that

$$
\begin{array}{ll}
x^{y} x-10=0 & f(x)=x^{4}-x-10=0 \\
x_{0}=2 & f^{\prime}(x)=4 x^{3}-1
\end{array}
$$

$$
\begin{aligned}
& x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \\
& =x_{0}-\frac{\left(x_{0}^{4}-x_{0}-10\right)}{\left(4 x_{0}^{3}-1\right)} \\
& =\frac{x_{0}\left(4 x_{0}^{3}-1\right)-\left(x_{0}^{4}-x_{0}-10\right)}{4 x_{0}^{3}-1} \\
& =\frac{4 x_{0}^{4}-x_{0}-x_{0}^{4}+x_{0}+10}{4 x_{0}^{3}-1} \\
& x_{1}=\frac{3 x_{0}^{4}+10}{4 x_{0}^{3}-1} \quad x_{0}=2 \\
& x_{1}=\frac{3(2)^{4}+10}{u(2)^{3}-1}=\frac{3(16)+10}{u(8)-1}=\frac{48+10}{32-1}=\frac{58}{31} \\
& =1.870967742 \\
& x_{1}=1.879 \text {. } \\
& x_{2}=\frac{3 x_{1}{ }^{4}+10}{4 x_{1}{ }^{3}-1}=\frac{3(1.871)^{4}+10}{4(1.871)^{3}-1} \\
& =\frac{3(12.25448741)+10}{u(6.549699311)-1} \\
& =\frac{36.76346223+10}{26.19879724-1} \\
& =\frac{46.76346223}{25.19879724} \\
& =1.855 .78152 \\
& x_{2}=1.8568 \\
& x_{3}=\frac{3 x_{2}^{4}+10}{4 x_{2}^{3}-1}=\frac{3(1.8558)^{4}+10}{4(1.8558)^{3}-1} \\
& =\frac{3(11.86109219)+10}{u(6.391363397)-1}=\frac{35.58327658+10}{25.56545359-1}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{u 5.58327658}{2 u .565 .45359} \\
& =1.855584568 \\
x_{3} & =1.8556 \\
x_{4} & =\frac{3 x_{3}^{4}+10}{4 x_{3}^{3}-1}=\frac{3(1.8556)^{4}+10}{4(1.8556)^{3}-1} \\
& =\frac{3(11.85597993)+10}{4(6.38929722 u)-1} \\
& =\frac{35.56793978+10}{25.55718889-1} \\
& =\frac{45.56793978}{24.55718889} \\
& =1.855584529 \\
\lambda_{4} & =1.8556
\end{aligned}
$$

The approximate roots are $x_{3}=x_{4}=1.8556$
$17 / 8118$ Logarithm functions
6. find the real root of the equation $x \log _{10}^{x}=1.2$

Solus) Given

$$
f(x)=x \log _{10}^{x}-1.2
$$

Put $x=0$

$$
\begin{aligned}
x=0, f(0)=0 \log _{10}^{0}-1.2 & =-1.2 \quad-v e \\
x=1, f(1)=1 \log _{10}^{1}-1.2 & =-1.2 \quad-v e \\
x=2, f(2)=2 \log _{10}^{2}-1.2 & =2(0.3010)-1.2-v e \\
& =0.602-1.2 \\
& =-0.598 \\
x=3 \quad f(3)=3 \log _{10}^{3}-1.2 & =3(0.4717)-1.2+v e \\
& =1.4151-1.2 \\
& =0.2151
\end{aligned}
$$

the routs are 2 and 3

$$
\begin{aligned}
x_{0}=\frac{a+b}{2} & =\frac{2+3}{2}=\frac{5}{2}=2.5 \\
f(x) & =x \log _{10}^{x}-1.2 \\
f(x) & =x \cdot \frac{\log x}{\log 10}-1 \cdot 2 \\
& =\frac{x \log x-1 \cdot 2 \log 10}{\log 10} \\
f^{\prime}(x) & =\frac{\left[x \frac{1}{x}+\log x \cdot 1-0\right]}{\log 10} \\
f^{\prime}(x) & =\frac{1+\log x}{\log 10}
\end{aligned}
$$

By Newton's method

$$
\begin{aligned}
x_{1} & =x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \\
& \left.=x_{0}-\frac{\left(\frac{x_{0} \log x_{0}-1.2 \log 10}{\log 10}\right)}{\frac{1+\log x_{0}}{\log 10}}\right) \\
& =x_{0}-\frac{\left(x_{0} \log x_{0}-1.2 \log 10\right)}{1+\log x_{0}} \\
& =\frac{x_{0}\left(1+\log x_{0}\right)-\left(x_{0} \log x_{0}-1.2 \log 10\right)}{1+\log x_{0}} \\
& =\frac{x_{0}+x_{0} \log x_{0}-x_{0} \log x_{0}+1.2 \log 10}{1+\log x_{0}} \\
& =\frac{x_{0}+1.2 \log 10}{1+\log x_{0}} \\
& =\frac{(2.5)+1.2 \log 10}{1+\log (2.5)}=\frac{2.5+1.26)}{1+0.397940008}=\frac{3.7}{1.397940008}=
\end{aligned}
$$

$$
\begin{aligned}
& =2.646751634 \\
& x_{1}=2.6468 \\
& =\frac{5.263102112}{1+\log (2.5)} \\
& \begin{aligned}
x_{2} & =\frac{x_{1}+1.2 \log 10}{1+\log x_{1}} \\
& =\frac{2.6468+1.2}{1+\log (2.6468)}
\end{aligned} \\
& =\frac{5.263102112}{1.916290731} \\
& =2.74650502 \\
& =\frac{3.8468}{1+0.422721126} \\
& x_{2}=\frac{x_{1}+1.2 \log 10}{1+\log x_{1}} \\
& =\frac{3.8468}{1.422721126} \\
& \left.=\frac{2.7465+1.2(2.3025}{1+\log (2.7465)} 85093\right) \\
& =2.703832768 \\
& =\frac{5.509602112}{2.010327374} \\
& x_{2}=2.7038 \\
& =2.740669201^{\circ} \\
& x_{3}=\frac{x_{2}+1.2 \log 10}{1+\log x_{2}} \\
& x_{2}=2.7407 \\
& =\frac{2.7038+1.2}{1+\log (2.7038)} \\
& =\frac{3.9038}{1+0.431974563} \\
& =\frac{3.9038}{1.431974563} \\
& =2.72383961] \\
& x_{3}=\frac{x_{2}+1.2 \log 10}{1+\log x_{2}} \\
& =\frac{2.7407+1.2(2.3025}{1+\log (2.7407)} \\
& =\frac{5.503802112}{1+1.008213362} \\
& =\frac{5.503802112}{2.008213362} \\
& =2.740 .646097 \\
& x_{3}=2.740 \mathrm{z}
\end{aligned}
$$

The approximate value $x_{2}=x_{3}=2.7407$
7. Compute one positive root of $2 x-\log _{10} x=7$
solus) Given that

$$
f(x)=2 x-\log _{10}^{x}-7
$$

put $x=0$

$$
\begin{aligned}
& x=0 \\
& f(0)=2(0)-\log _{10}^{0}-7, \quad-v c \\
&=0-0-7 \\
&=-7
\end{aligned}
$$

$$
\begin{aligned}
& f(1)=2(1)-\log _{10}^{1}-7-v e \\
& =2-0-7 \\
& =-5 \\
& f(2)=2(2)-\log _{10}^{2}-7 \quad-v e \\
& =4-0.3010-7 \\
& =-3.301 \\
& f(3)=2(3)-\log _{10}^{3}-7 \quad-v c \\
& =6-0.477121-7 \\
& =-1.4771 \\
& f(u)=2(u)-\log _{10} 4-7 \quad \text { tve } \\
& =8-0.60205-7 \\
& =0.39795 \\
& x_{0}=\frac{a+b}{2}=\frac{3+4}{2}=\frac{7}{2}=3.5 \\
& f(x)=2 x-\log _{10}^{x}-7 \\
& f^{\prime}(x)=2 x-\frac{\log x}{\log 10}-7 \\
& =\frac{2 x \log 10-\log x-7 \log 10}{\log 10} \\
& E \frac{2 x+\log x(0)-\log x-7 \log 10}{\log 10} \\
& f^{\prime}(x)=\frac{2\left[x \frac{1}{x}+\log x\right]-\log x-7 \log 10}{\log 10} \\
& =\frac{2(1+\log x)-\log x-7 \log 10}{\log 10} \\
& =2+2 \log x . \\
& f^{\prime}(x)=\frac{1}{\log 10}\left[2 \log 10-\frac{1}{x}\right] \\
& =\frac{1}{\log _{10}}\left[\frac{2 x \log 10-1}{x}\right]
\end{aligned}
$$

$$
f^{\prime}(x)=\frac{2 x \log 10-1}{x \log 10}
$$

By Newton's Iterative method

$$
\begin{aligned}
& x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \\
& =x_{0}-\frac{\left[\frac{2 x_{0} \log 10-\log x_{0}-7 \log 10}{\log 10}\right]}{\left[\frac{2 x_{0} \log 10-1}{x_{0} \log 10}\right]} \\
& =x_{0}-\frac{\left(2 x_{0} \log 10-\log x_{0}-7 \log 10\right)}{2 x_{0} \log 10-1} x_{0} \\
& =\frac{\left.x_{0} / 2 x_{0} \log 10-1\right)-\left(2 x_{0}{ }^{2} \log 10-x_{0} \log x_{0}-x_{0} 7\right.}{2 x_{0} \log 10-1} \\
& =\frac{2 x_{0}{ }^{2} \log 10-x_{0}-2 x_{0}{ }^{2} \log 10+x_{0} \log x_{0}+x_{0}+\log 10}{2 x_{0} \log 10-1} \\
& \begin{aligned}
x_{1} & =\frac{x_{0}\left[-1+\log x_{0}+7 \log 10\right]}{\left(2 x_{0} \log 10-1\right)}
\end{aligned} \\
& x_{1}=\frac{3.5[-1+\log (.3 .5)+7 \log 10]}{2(3.5) \log 10-1} \\
& =\frac{3.5[-1+1.252762968+7(2.302585093)]}{7(2.302585093)-1} \\
& =\frac{3.5[16.37085862]}{15.11809565} \\
& =\frac{57.29800517}{15 \cdot 11809565} \\
& =3.790027957 \\
& =3.7900
\end{aligned}
$$

$$
\begin{aligned}
& x_{2}=\frac{x_{1}\left[-1+\log x_{1}+7 \log _{10}\right]}{2 x_{1} \log 10-1} \\
& =\frac{3.7900(-1+\log (3.7900)+16.11809565)}{2(3.7900) \log 10-1} \\
& =\frac{3.7900[-1+1.332366019+16.11809565]}{2(3.7900)(2.302585093)-1} \\
& =\frac{(16.45046167) 3.7900}{17.7153595-1} \\
& =\frac{62 \cdot 34724973}{16.653595} \\
& =3.789278254 \\
& x_{2}=3.7893 \\
& x_{3}=\frac{x_{2}\left[-1+\log x_{2}+7 \log 10\right]}{2 x_{2} \log 10-1} \\
& =\frac{(3.7893)[-1+\log (3.7893)+16.118095 .65]}{2(3.7893)(2.302585093)-1} \\
& =\frac{3.7893[-1+9.332181305)+16.11809565)}{17.45037139-1} \\
& =\frac{3.7893(16.45027696)}{16.4503 .7139} \\
& =\frac{62.33503447}{16.45037139} \\
& =3.789278247 \\
& x_{3}=3.7893
\end{aligned}
$$

The approximate value $x_{2}=x_{3}=3.7893$.

Regula-Falsi method (or) False position Method. consider
$y=f(x)$ be the given curve and the given Curve Passing through $A\left(x_{1}, y_{1}\right) \wedge B\left(x_{2}, y_{2}\right)$ then

$$
y_{1}=f\left(x_{1}\right) \& \quad y_{2}=f\left(x_{2}\right)
$$

Then the equation to the curve is

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \text { where } m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& y-y_{1}=\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)\left(x-x_{1}\right)
\end{aligned}
$$

Since the $0, y_{1}=$ given curve intersect at x-axis so $y=0$

$$
\begin{aligned}
& \therefore 0-y_{1}=\left[\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right]\left(x-x_{1}\right) \\
& x-x_{1}=-\frac{y_{1}\left(x_{2}-x_{1}\right)}{y_{2}-y_{1}} \\
& x=x_{1}-\frac{\left(x_{2}-x_{1}\right) y_{1}}{y_{2}-y_{1}} \\
& x=x_{1}-\left[\frac{x_{2}-x_{1}}{f\left(x_{2}\right)-f\left(x_{1}\right)}\right] f\left(x_{1}\right) \\
&=\frac{x_{1}\left(f\left(x_{2}\right)-f\left(x_{1}\right)\right)-\left(x_{2}-x_{1}\right) f\left(x_{1}\right)}{f\left(x_{2}\right)-f\left(x_{1}\right)} \\
&=\frac{x_{1} f\left(x_{2}\right)-x_{1} f\left(x_{1}\right)-x_{2} f\left(x_{1}\right)+x_{1} f\left(x_{1}\right)}{f\left(x_{2}\right)-f\left(x_{1}\right)} \\
& x=\frac{x_{1} f\left(x_{2}\right)-x_{2} f\left(x_{1}\right)}{f\left(x_{2}\right)-f\left(x_{1}\right)} \\
& \therefore \text { If } x=x_{3} \\
& x_{3}=\frac{x_{1} f\left(x_{2}\right)-x_{2} f\left(x_{1}\right)}{f\left(x_{2}\right)-f\left(x_{1}\right)}
\end{aligned}
$$

similarly $x_{4}=\frac{x_{2} f^{\prime}\left(x_{3}\right)-x_{3} f\left(x_{2}\right)}{f\left(x_{3}\right)-f\left(x_{2}\right)}$

$$
x_{5}=\frac{x_{3} f\left(x_{u}\right)-x_{u} f\left(x_{3}\right)}{f\left(x_{u}\right)-f\left(x_{3}\right)}
$$

sole
318

1. find a real root of the equation $x \log _{10} x-1 \cdot 2=0$ by folse position method
solus

$$
\begin{aligned}
& x \log _{10} x-1,2=f(x) \\
& f(x)=x \log _{10}^{x}-1.2 \\
& x=0, f(0)=0 \log _{10}^{0}-1.2=-1.2 \\
& x=1, f(1)=1 \log _{10}^{1}-1.2=0-1.2=-1.2 \\
& x=2, f(2)=2 \log _{10}^{2}-1 \cdot 2 \\
& =2(0.3010)-1.2 \\
& =0.6030-1.2 \\
& =-0.5980 \\
& x=3, f(3)=3 \log _{10}^{3}-1.2 \\
& =3(0.477121254)-1.2 \\
& =1.431363764-1.2 \\
& =0.231363764 \\
& =0.2314 \\
& x_{1}=2 ; f\left(x_{1}\right)=-0.598 \\
& x_{2}=3 ; f\left(x_{2}\right)=0.2314 \\
& x_{3}=\frac{x_{1} f\left(x_{2}\right)-x_{2} f\left(x_{1}\right)}{f\left(x_{2}\right)-f\left(x_{1}\right)} \\
& =\frac{2(0.231 u)-3(-0.598)}{0.231 u-(-0.598)}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{0.4628+1.794}{0.8294} \\
& =\frac{2.25 .68}{0.8294} \\
& =2.721003135 \\
& x_{3}=2.721 \\
& f\left(x_{3}\right)=2.721 \log _{10}(2.721)-1.2 \\
& =2.721(0.434728541)-1.2 \\
& =1.182896362-1.2 \\
& =-0.017103637 \\
& =-0.0171 \\
& x_{u}=\frac{x_{2} f\left(x_{3}\right)-x_{3} f\left(x_{4}\right)}{f\left(x_{3}\right)-f\left(x_{2}\right)} \\
& =\frac{3(-0.0171)-2.721(0.2314)}{-0.0171-0.2314} \\
& =\frac{-0.0513-0.6296394}{-0.2485} \\
& =\frac{-0.6809394}{-0.2485} \\
& =2.740198793 \\
& x_{4}=2.7402 \\
& f\left(x_{u}\right)=2.7402 \log _{10}(2.7402)-1.2 \\
& =2.7402(0.437782262)-1.2 \\
& =1.199610954-1.2 \\
& =-0.000389046 \\
& =-0.0004
\end{aligned}
$$

$$
\begin{aligned}
& x_{5}=\frac{x_{3} f\left(x_{u}\right)-x_{u} f\left(x_{3}\right)}{f\left(x_{u}\right)-f\left(x_{3}\right)} \\
& =\frac{2.721 \times-0.084-2.7402 \times(-0.0171)}{-0.004-(-0.0171)} \\
& =\frac{-0.0010884+0.04685742}{0.0167} \\
& =\frac{0.04576902}{0.0167} \\
& =2.74065988 \\
& x_{5}=2.7407 \\
& f\left(x_{5}\right)=2.7407 \log _{10}(2.7407)-1.2 \\
& =2.7407(0.437861499)-1.2 \\
& =1.200047012-1.2 \\
& =0.0000 .47012488 \\
& =0.0001 \\
& x_{6}=\frac{x_{4} f\left(x_{5}\right)-x_{5} f\left(x_{4}\right)}{f\left(x_{5}\right)-f\left(x_{4}\right)} \\
& =\frac{2.7402 \times 0.0001-2.7407(-0.0004)}{0.0001-(-0.0004)} \\
& =\frac{0.00027402+0.00109628}{0.0005} \\
& =\frac{0.0013703}{0.0005} \\
& =2.7406 \\
& f\left(x_{6}\right)=2.7406 \log (2.7406)-1.2 \\
& =2.7406(0.437845653)-1.2 \\
& =1.199959798-1.2
\end{aligned}
$$

$$
\begin{aligned}
& =-0.0000 .402023171 \\
& =-0.0 \\
x_{7}=x_{6} & =2.7406
\end{aligned}
$$

The roots of the equation

$$
x_{7}=x_{6}=2.7406
$$

2. find the real roots of the equation

$$
x-e^{-x}=0
$$

Solve)

$$
\begin{aligned}
& x-e^{-x}=0 \\
& f(x)=x-e^{-x} \\
& x=0, f(0)=0-c^{-0}=-1 \\
& x=1, f(1)=1-e^{-1}=0.6321205588 \\
& =0.6321 \\
& x_{1}=0, f\left(x_{1}\right)=-1, \\
& x_{2}=1, f\left(x_{2}\right)=0.6321 \\
& x_{3}=\frac{x_{1} f\left(x_{2}\right)-x_{2} f\left(x_{1}\right)}{f\left(x_{2}\right)-f\left(x_{1}\right)} \\
& =\frac{0(0.6321)-(1)(-1)}{0.6321-(-1)} \\
& \begin{aligned}
=\frac{0+1}{0.6321+1}=\frac{1}{1.6321} & =0.612707554 \\
& =0.6127
\end{aligned} \\
& f\left(x_{3}\right)=(0.6127) \log _{10}(0.6127)-x .2 e^{-0.6127} \\
& E(0.6127)(-0.212752119)-\lambda .20 .5418858 \\
& =-0.130353223-1 / 20.5418858 \\
& =-+.3303532249] \quad 0.07081419954 \\
& =0.0708
\end{aligned}
$$

$$
\begin{aligned}
& x_{4}=\frac{x_{2} f\left(x_{3}\right)-x_{3} f\left(x_{2}\right)}{f\left(x_{3}\right)-f\left(x_{2}\right)} \\
& =\frac{1 \times 0.0708-0.6127 \times 0.6321}{0.0708-0.6321} \\
& =\frac{0.0708-0.38728767}{-0.5613} \\
& =\frac{-0.31648767}{-0.5613}=0.563847621 \\
& x_{4}=0.5639 \\
& f\left(x_{u}\right)=0.5639 \log _{10}(0.8639)-e^{-0.5639} \\
& E 0.5639(-0.248797905)-(0.568985686) \\
& =0.140297138-0.568985686] \\
& =-0.0050856860 \\
& f\left(x_{u}\right)=-0.0051 \\
& x_{5}=\frac{x_{3} f\left(x_{4}\right)-x_{4}\left(f^{\prime}\left(x_{3}\right)\right.}{f\left(x_{4}\right)-f\left(x_{3}\right)} \\
& =\frac{0.6127 x-0.0051-0.5639 \cdot(0.0708)}{-0.0051-0.0708} \\
& =\frac{-0.04304889}{-0.0759}=0.567179051 \\
& x_{5}=0.5672 \\
& f\left(x_{5}\right)=0.5672-e^{-0.5672} \\
& =0.5672-0.567111128 \\
& =0.00008887114156 \\
& =0.0001 \\
& x_{6}=\frac{x_{4} f\left(x_{5}\right)-x_{5} f\left(x_{u}\right)}{f\left(x_{5}\right)-f\left(x_{u}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{0.5639 \times 0.0001-0.56721 x-0.0051}{0.0001-(-0.0051)} \\
& =\frac{0.00294911}{0.0052} \\
& =0.567136538 \\
x_{6} & =0.5671 \\
f\left(x_{6}\right) & =0.5671-e^{-0.5671} \\
& =0.5671-0.567167842 \\
& =-0.000067842 \\
& =-0.0009 \\
x_{7} & =\frac{x_{5} f\left(x_{6}\right)-x_{6} f\left(x_{5}\right)}{f\left(x_{6}\right)-f\left(x_{5}\right)} \\
& =0.5672(-0.0001)-0.5671(0.5672) \\
& =\frac{0.0001-0.5672}{} \\
= & 0.0005672-0.3216024 \\
& =x_{6}=0.5671 \\
& =0.567099982 \\
& =0.5671 \\
& =012
\end{aligned}
$$

The vol roots are $x_{6}=x_{7}=0.5671$
3. $x^{3}-5 x+3=0$ by using false position method 0

Solus) Given that

$$
\begin{aligned}
0=x^{3}-5 x+3 & =f(x) \\
x=0, f(0) & =0-5(0)+3=3 \\
x=1, f(1) & =1-5(1)+3=-1 \\
x=2, f(2) & =2^{3}-5(2)+3 \\
& =8-10+3 \\
& =1
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}=1, f\left(x_{1}\right)=-1 \\
& x_{2}=2, f\left(x_{2}\right)=1 \\
& x_{3}=\frac{x_{1} f\left(x_{2}\right)-x_{2} f\left(x_{1}\right)}{f\left(x_{2}\right)-f\left(x_{1}\right)} \\
& =\frac{1(1)-2(-1)}{1-(-1)}=\frac{1+2}{1+1}=\frac{3}{2}=1.5 \\
& x_{3}=1.5 \\
& f\left(x_{3}\right)=(1.5)^{3}-5(1.5)+3 \\
& =3.375-7.5+3 \\
& =-1.125 \\
& x_{u}=\frac{x_{2} f\left(x_{3}\right)-x_{3} f\left(x_{2}\right)}{f\left(x_{3}\right)-f\left(x_{2}\right)} \\
& =\frac{2(-1.125)-(1.5)(1)}{-1.125-1} \\
& =\frac{-2.25-1.5}{-2.125} \\
& =\frac{-3.75}{-2.125}=1.764705882 \\
& x_{4}=1.76 \text { 多才 } 5 \\
& f\left(x_{u}\right)=(1.765)^{3}-5(1.765)+3 \\
& =5.498372125-8.825+3 \\
& =-0.326627875 \\
& f(x u)=-0.327 \\
& x_{5}=\frac{x_{3} f(x u)-x_{4} f\left(x_{3}\right)}{f\left(x_{u}\right)-f\left(x_{3}\right)} \\
& =\frac{(-x \times 285)(-0.327)-(1.765)(-1.125)}{-0.327-(-1.125)}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{-0.4905+1.985625}{0.798} \\
& =\frac{1.495125}{0.798} \\
& =1.873590226 \\
& =1.874 \\
& f\left(x_{5}\right)=(1.87 u)^{3}-5(1.87 u)+3 \\
& =6.581255624-9.37+3 \\
& =0.211255624 \\
& =0.211 \\
& x_{6}=\frac{x_{4} f\left(x_{5}\right)-x_{5} f\left(x_{4}\right)}{f\left(x_{5}\right)-f\left(x_{4}\right)} \\
& =\frac{1.765(0.211)-(1.87 u)(-0.327)}{0.211-(-0.327)} \\
& =\frac{0.372415+0.612798}{0.538} \\
& =\frac{0.985213}{0.538} \\
& =1.831250929 \\
& x_{6}=1.831 \\
& f\left(x_{6}\right)=(1.831)^{3}-5(1.831)+3 \\
& =6.138539191-9.155+3 \\
& =-0.016460809 \\
& =-0.016 \\
& x_{7}=\frac{x_{5} f\left(x_{6}\right)-x_{6} f\left(x_{5}\right)}{f\left(x_{6}\right)-f\left(x_{5}\right)} \\
& =\frac{1.874(-0.016)-1.831(0.211)}{-0.016-0.211}
\end{aligned}
$$

$$
\begin{aligned}
&=\frac{-0.029984-0.386341}{-0.227} \\
&=\frac{-0.416325}{-0.227} \\
&=+1.83 .4030837 \\
&=1.834 \\
& f\left(x_{8}\right)=(1.834)^{3}-5(1.834)+3 \\
&=6.168761704-9.17+3 \\
&=-0.001238296 \\
&=-0.001 \\
& x_{8}=\frac{x_{6} f\left(x_{7}\right)-x_{7} f\left(x_{6}\right)}{f\left(x_{7}\right)-f\left(x_{6}\right)} \\
&=\frac{1.831 t-0.001)-(1.834) t-0.016)}{-0.001-(-0.016)} \\
&=\frac{-0.00183 f+0.029344}{0.015} \\
&=\frac{0.027513}{0.015}=1.8342=1.834 \\
& F\left(x_{8}\right)=x_{7}=x_{8}=1.834 \\
& x
\end{aligned}
$$

The real roots are $x_{7}=x_{8}=1.834$
19118^{4} Find the real root of the equation $\tan x+\tanh x=0$
in the introval $[1.6,3)$
Given

$$
\begin{aligned}
f(x) & =\tan x+\tanh x \\
f(1.6) & =\tan (1.6)+\tanh (1.6) \\
& =-34.23253274+0.921668554 \\
& =-33.31086418
\end{aligned}
$$

$$
\begin{aligned}
& f(2)=\tan 2+\tanh 2 \\
& =-2.185039863+0.96402758 \\
& =-1.221012283 \\
& f(2.2)=\tan (2.2)+\tanh (2.2) \\
& =-1.373823057+0.97574313 \\
& =-0.398079926 \\
& f(2 \cdot u)=\tan (2 \cdot u)+\tanh (2 \cdot u) \\
& =-0.916014289+0.983674857 \\
& =0.067660568 \\
& x_{1}=2.2 \quad f\left(x_{1}\right)=-0.3981 \\
& x_{2}=2.4 \quad f\left(x_{2}\right)=0.0677 \\
& x_{3}=\frac{x_{1} f\left(x_{2}\right)-x_{2} f\left(x_{1}\right)}{f\left(x_{2}\right)-f\left(x_{1}\right)} \\
& =\frac{(2.2)(0.0677)-(2.4)(-0.3981)}{0.0677-(-0.3981)} \\
& =\frac{(2.2)(0.0677)+(2.4)(0.3981)}{0.0677+0.3981} \\
& =\frac{0.14894+0.95544}{0.4658}=\frac{1.10438}{0.4658} \\
& =2.37093173 \\
& x_{3}=2.3709 \\
& f\left(x_{3}\right)=\tan (2.3709)+\tanh (2.3709) \\
& =-0.971013157+0.982705001 \\
& =0.011691844 \\
& =0.0117 \\
& x_{u}=\frac{x_{2} f\left(x_{3}\right)-x_{3} f\left(x_{2}\right)}{f\left(x_{3}\right)-f\left(x_{2}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{(2.4)(0.0117)-2.3709 \times 0.0677}{0.0117-0.0677} \\
& =\frac{0.02808-0.16050993}{-0.056} \\
& =\frac{-0.13242993}{-0.056}=2.364820179 \\
& x_{4}=2.3648=2.3645 \\
& f(x u)=\tan (2.3648)+\text { tan } h(2.3648) \\
& =-0.982935408+0.982494568 \\
& =-0.000 .4408403 \\
& =-0.0004 \\
& x_{5}=\frac{x_{3} f\left(x_{u}\right)-x_{4} f\left(x_{3}\right)}{f\left(x_{4}\right)-f\left(x_{3}\right)} \\
& =\frac{(2.3709)(-0.0004)-(2.3648)(0.0117)}{-0.0004-0.0117} \\
& =\frac{-0.00094836-0.02766816}{-0.0121} \\
& =\frac{-0.02861652}{-0.0121} \\
& =2.365001653 \\
& x_{5}=2.365 \\
& f\left(x_{5}\right)=\tan (2.365)+\tanh (2.365) \\
& =-0.982542253+0.982501507 \\
& =\frac{0.00004074}{1}=0.0000 \\
& x_{6}=\frac{x_{4} f\left(x_{5}\right)-x_{5} f\left(x_{4}\right)}{f\left(x_{5}\right)-f\left(x_{4}\right)} \\
& =\frac{(2.3648)(0.0000)-(2.365) \cdot(-0.0004)}{0.0000-(-0.0004)}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{0.000946}{0.0004} \\
& =2.365
\end{aligned}
$$

$x_{5}=x_{6}=2.365$ are real roots.
5 find the root of the given Equation $x e^{x}=\cos x$ in intraval (0.1)
Solus Given $f(x)=x e^{x}-\cos x$

$$
\begin{aligned}
& x=0.5, f(0.5)=(0.5) e^{0.5}-\cos (0.5) \\
& =(0.5)(1.648721271)-0.877582561 \\
& =0.824360635-0.877582561 \\
& =-0.053221926 \\
& x=0.6 f(0.6)=(0.6) e^{0.6}-\cos (0.6) \\
& =(0.6)(1.8221188)-0.825335614 \\
& =1.09327128-0.825335614 \\
& =0.267935666 \\
& x_{1}=0.5, \quad f\left(x_{1}\right)=-0.0532 \\
& x_{2}=0.6 \quad f\left(x_{2}\right)=0.2679 \\
& x_{3}=\frac{x_{1} f\left(x_{2}\right)-x_{2} f\left(x_{1}\right)}{f\left(x_{2}\right)-f\left(x_{1}\right)} \\
& =\frac{(0.5)(0.2679)-(0.6)(-0.0532)}{0.2679-(-0.0532)} \\
& =\frac{0.13395+0.03192}{0.3211} \\
& =\frac{0.16587}{0.3211}=0.516568047 \\
& =0.5166 \\
& f\left(x_{3}\right)=(0.5166) e^{0.5166}-\cos (0.5166) \\
& =-0.003517432952 \\
& =-0.0035
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}=\frac{x_{2} f\left(x_{3}\right)-x_{3} f\left(x_{2}\right)}{f\left(x_{3}\right)-f\left(x_{2}\right)} \\
& =\frac{(0.6)(-0.0035)-(0.5166)(0.2679)}{-0.0035-0.2679} \\
& =\frac{-0.0021-0.13839714}{-0.2714} \\
& =\frac{-0.14049714}{-0.2714} \\
& =0.517675534 \\
& =0.5177 \\
& f\left(x_{u}\right)=(0.5177) e^{0.5177}-\cos (0.5177) \\
& =(0.5177)(1.678163432)-0.868959707 \\
& =0.868785208-0.868959707 \\
& =-0.0002 \\
& x_{5}=\frac{x_{3} f\left(x_{4}\right)-x_{4} f\left(x_{3}\right)}{f\left(x_{4}\right)-f\left(x_{3}\right)} \\
& =\frac{(0.5166)(-0.0002)-(0.5177)(-0.0035)}{-0.0002+0.0035} \\
& =\frac{-0.00010332+0.00181195}{0.0033} \\
& =\frac{0.00170863}{0.0033}=0.517766666 \\
& =0.5178 \\
& { }^{x^{3}-(x+1)} f\left(x_{5}\right)=(0.5178) e^{0.5178}-\cos (0.5178) \\
& =(0.5178)(1.678331256)-0.868910215 \\
& =0.869039924-0.868910215 \\
& =0.0001297095828 \\
& =0.0001
\end{aligned}
$$

$$
\begin{aligned}
x_{6} & =\frac{x_{u} f\left(x_{5}\right)-x_{5} f\left(x_{4}\right)}{f\left(x_{5}\right)-f\left(x_{4}\right)} \\
& =\frac{(0.5177)(0.0001)-(0.5178)(-0.0002)}{0.0001-(-0.0002)} \\
& =\frac{0.00005177+0.00010356}{0.0003} \\
& =\frac{0.00015533}{0.0003} \\
& =0.517766666 \\
& =0.5178 \\
x_{5} & =x_{6}=0.5178 \\
& 7 . x^{x}=3
\end{aligned}
$$

Solus) Given that

$$
\begin{aligned}
& f(x)=x^{3}-4 x+1 \\
& x=0, f(0)=0-4(0)+1=1 \\
& x=1, f(1)=1-u(1)+1=-2 \\
& x=2, f(2)=2^{3}-u(2)+1 \\
& =8-8+1=1 \\
& x_{1}=1, f\left(x_{1}\right)=-2 \\
& x_{2}=2, f\left(x_{2}\right)=1 \\
& x_{3}=\frac{x_{1} f\left(x_{2}\right)-x_{2} f\left(x_{1}\right)}{f\left(x_{2}\right)-f\left(x_{1}\right)} \\
& =\frac{1(1)-2(-2)}{1-(-2)}=\frac{1+4}{1+2}=\frac{5}{3} . \\
& =1.66666667 \\
& x_{3}=1.6667 \\
& f\left(x_{3}\right)=(1.6667)^{3}-4(1.6667)+1 \\
& =4.629907413-6.6668+1 \\
& =-1.036892587
\end{aligned}
$$

$$
\begin{aligned}
& =-1.03609 \\
& x_{4}=\frac{x_{2} f\left(x_{3}\right)-x_{3} f\left(x_{2}\right)}{f\left(x_{3}\right)-f\left(x_{2}\right)} \\
& =\frac{2(-1.0369)-1.6667(1)}{-1.0369-1} \\
& =\frac{-2.0738-1.6667}{-2.0369}=\frac{-3.7405}{-2.0369} \\
& =1.836368992 \\
& x_{4}=1.8364 \\
& f\left(x_{u}\right)=(1.8364)^{3}-4(1.8364)+1 \\
& =6.193011013-7 \cdot 3456+1 \\
& =-0.152588987 \\
& =-0.1526 \\
& x_{5}=\frac{x_{3} f\left(x_{u}\right)-x_{u} f\left(x_{3}\right)}{f\left(x_{u}\right)-f\left(x_{3}\right)} \\
& =\frac{1.6667(-0.1526)-(1.8364)(-1.0369)}{-0.1526+1.0369} \\
& =\frac{-0.25433842+1.90416316}{0.8843} \\
& =\frac{1.64982474}{0.8843}=1.865684428 \\
& x_{5}=1.8657 \\
& f\left(x_{5}\right)=(1.8657)^{3}-4(1.8657)+1 \\
& =6.494196639-7.4628+1 \\
& =0.031396639 \\
& =0.0314
\end{aligned}
$$

$$
\begin{aligned}
& x_{6}=\frac{x_{4} f\left(x_{5}\right)-x_{5} f\left(x_{4}\right)}{f\left(x_{5}\right)-f\left(x_{4}\right)} \\
& =\frac{1.836 u(0.031 u)-1.8657(-0.1526)}{0.0314+0.1526} \\
& =\frac{0.05766296+0.28470582}{0.184} \\
& =\frac{0.34236878}{0.184} \\
& =1.860699891 \\
& x_{6}=1.8607 \\
& f\left(x_{6}\right)=(1.8607)^{3}-u(1.8607)+1 \\
& =6.442123895-7.4428+1 \\
& =-0.000676105 \\
& =-0.0007 \\
& x_{7}=\frac{x_{5} f\left(x_{6}\right)-x_{6} f\left(x_{5}\right)}{f\left(x_{6}\right)-f\left(x_{5}\right)} \\
& =\frac{1.8657(-0.0007)-(1.8607)(0.0314)}{-0.0007-0.0314} \\
& =\frac{-0.00130599-0.05842598}{-0.0321 \mathrm{~F}} \\
& =\frac{-0.05973197}{-0.0321} \\
& =1.860809034 \\
& x_{7}=1.8608 \\
& f\left(x_{7}\right)=(1.8608)^{3}-4(1.8608)+1 \\
& =6.443162612-7.4432+1 \\
& =-0.0000373288
\end{aligned}
$$

$$
\begin{aligned}
x_{8} & =\frac{x_{6} f\left(x_{7}\right)-x_{7} f\left(x_{6}\right)}{f\left(x_{7}\right)-f\left(x_{6}\right)} \\
& =\frac{1.8607(-0.000)-(1.8608)(-0.0007)}{-0.000+0.0007} \\
& =0+\frac{0.00130256}{0.0007} \\
x_{8} & =1.8608 \\
x_{7} & =x_{8}=1.8608 \text { the oneal roots }
\end{aligned}
$$

7 Given that

$$
f(x)=x e^{x}-3
$$

$$
x=0, f(0)=0 e^{0}-3
$$

$$
=-3
$$

$$
x=1, f(1)=1 e^{1}-3
$$

$$
=2.718281828-3
$$

$$
=-0.281718171
$$

$$
=-0.2817
$$

$$
x=2, f(2)=2 e^{2}-3
$$

$$
=2(7.389056099)-3
$$

$$
=14.7781122-3
$$

$$
=11.7781122
$$

$$
=11.7781
$$

$$
x_{1}=1, f\left(x_{1}\right)=-0.2817
$$

$$
x_{2}=2, f\left(x_{2}\right)=11.7781
$$

$$
x_{3}=\frac{x_{1} f\left(x_{2}\right)-x_{2} f\left(x_{1}\right)}{f\left(x_{2}\right)-f\left(x_{1}\right)}
$$

$$
=\frac{1(11.7781)-2(-0.2817)}{11.7781+0.2817}
$$

$$
\begin{aligned}
& =\frac{11.7781+0.5634}{12.0598} \\
& =\frac{12.3415}{12.0598} \\
& =1.023358596 \\
& x_{3}=1.02345 \\
& f\left(x_{3}\right)=(1.0234) e^{1.0234}-3 \\
& =(1.0234)(2.782639673)-3 \\
& =2.847753442-3 \\
& =-0.152246558 \\
& =-0.1522 \\
& x_{u}=\frac{x_{2} f\left(x_{3}\right)-x_{3} f\left(x_{2}\right)}{f\left(x_{3}\right)-f\left(x_{2}\right)} \\
& =\frac{2(-0.1522)-(1.0234)(11.7781)}{-0.1522-11.7781} \\
& =\frac{-0.3044-12.05370754}{-11.9303} \\
& =\frac{-12.35810754}{-11.9303} \\
& =+1.035858909 \\
& =1.0359 \\
& f\left(x_{u}\right)=(1.0359) e^{1.0359}-3 \\
& =(1.0359)(2.817640972)-3 \\
& =2.918794283-3 \\
& =-0.081205717 \\
& =-0.0812
\end{aligned}
$$

$$
\begin{aligned}
& x_{5}=\frac{x_{3} f\left(x_{4}\right)-x_{4} f\left(x_{3}\right)}{f\left(x_{u}\right)-f\left(x_{3}\right)} \\
& =\frac{(1.0234)(-0.0812)-(1.0359)(-0.1522)}{-0.0812+0.1522} \\
& =\frac{-0.08310008+0.15766398}{0.071} \\
& =\frac{0.0745639}{0.071} \\
& =0.07456391 .050195775 \\
& =0.0746 \quad 1.0502 \\
& f\left(x_{5}\right)=(1.0502) e^{1.0502}-3 \\
& =(1.0502)(2.858222705)-3 \\
& =3.001705485-3 \\
& =0.001705485257 \\
& =0.0017 \\
& x_{6}=\frac{x_{4} f\left(x_{5}\right)-x_{5} f\left(x_{4}\right)}{f\left(x_{5}\right)-f\left(x_{4}\right)} \\
& =\frac{1.0359(0.0017)-(1.0501)(-0.0812)}{0.0017+0.0812} \\
& =\frac{0.00176103+0.08526812}{0.0829} \\
& =\frac{0.08702915}{0.0829} \\
& =1.049808806 \\
& =1.0498 \\
& f\left(x_{6}\right)=(1.0498) e^{1.0498}-3 \\
& =(1.0498)(2.857079645)-3 \\
& =2.999362211-3 \\
& =-0.0006377886908
\end{aligned}
$$

$$
\begin{aligned}
& =-0.0006 \\
& x_{7}=\frac{x_{5} f\left(x_{6}\right)-x_{6} f\left(x_{5}\right)}{f\left(x_{6}\right)-f\left(x_{5}\right)} \\
& =\frac{(1.0501)(-0.0006)-(1.0498)(0.0017)}{-0.0006-0.0017} \\
& =\frac{0.00063006-0.00178466}{-Q .0023} \\
& =\frac{-0.0011546}{-0.0023} \\
& =0.502 \\
& f\left(x_{7}\right)=(0.502) e^{0.502}-3 \\
& =(0.502)(1.652022013)-3 \\
& =0.82931505-3 \\
& =-2.170684949 \\
& =-2.1707 \\
& x_{8}=\frac{x_{6} f\left(x_{7}\right)-x_{7} f\left(x_{6}\right)}{f\left(x_{7}\right)-f\left(x_{6}\right)} \\
& =\frac{1.0498(-2.1707)-(0.502) \cdot(-0.0006)}{2.1707+0.0006} \\
& -2.1707+0.0006 \\
& =\frac{-2.27880086+0.0003012}{-2.1701} \\
& =\frac{-2.27849966}{-2.1701} \\
& =+1.049951458 \\
& =1.0492 \\
& f\left(x_{8}\right)=(1.0491) e^{1.0491}-3 \\
& =(1.0491)(2.855080389)-3
\end{aligned}
$$

$$
\begin{aligned}
& =2.995264836-3 \\
& =-0.004735163839 \\
& =-0.0047 \\
& x_{9}=\frac{x_{7} f\left(x_{8}\right)-x_{8} f\left(x_{7}\right)}{f\left(x_{8}\right)-f\left(x_{7}\right)} \\
& =\frac{(0.502)(-0.0047)-(1.0491)(-2.1707)}{0.0047+2.1707} \\
& =\frac{-0.0023594+2.27728137}{2.166} \\
& =\frac{2.27492197}{2.166} \\
& =1.050287151 \\
& =1.0503 \\
& f\left(x_{9}\right)=(1.0503) c^{1.0503}-3 \\
& =(1.0503)(2.858508542)-3 \\
& =3.002291522-3 \\
& =0.002291521669 \\
& =0.0023
\end{aligned}
$$

$$
\begin{aligned}
& x_{10}=\frac{x_{8} f\left(x_{9}\right)-x_{9} f\left(x_{8}\right)}{f\left(x_{9}\right)-f\left(x_{8}\right)} \\
& =\frac{(1.0491)(0.0023)-(1.0503)(-0.0047)}{0.0023+0.0047} \\
& =\frac{0.00241293+0.00493641}{0.007} \\
& =\frac{0.00734934}{0.007} \\
& =1.049905714 \\
& =1.0499 \\
& f\left(x_{10}\right)=(1.0499) e^{1.0499}-3 \\
& =(1.0499)(2.857365367)-3 \\
& =2.999947899-3 \\
& =0.00005210093563 \\
& =0.0000 \\
& x_{11}=\frac{x_{9} f\left(x_{10}\right)-x_{10} f\left(x_{9}\right)}{f\left(x_{10}\right)-f\left(x_{9}\right)} \\
& =\frac{(1.0503)(0.0000)-(1.0499)(0.0023)}{0.0000-0.0023} \\
& =\frac{-0.00241477}{-0.0023} \\
& =1.0499 \\
& x_{10}=x_{11}=1.0499 \text { real values. }
\end{aligned}
$$

$$
\therefore\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
k \\
-4 k \\
k
\end{array}\right]=k\left[\begin{array}{c}
1 \\
-4 \\
1
\end{array}\right]
$$

goth 131^{18} Gauss - Seidl Iteration Method we will consider the system of equations

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}=b_{1} ; a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}=b_{2} ; \\
& a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}=b_{3} ; \rightarrow \text { (1) }
\end{aligned}
$$

where the diagonal co-eflicients are not zero and are large compare to other co-etlicients such a system is called diagonally dominant system
9. Solve $10 x+y+z=12 ; 2 x+10 y+z=13 ; 2 x+2 y+10 z=14$ by Gauss-seidl iteration method
Solus Given equations

$$
\begin{aligned}
& 10 x+y+z=12 \\
& 2 x+10 y+z=13 \\
& 2 x+2 y+10 z=14
\end{aligned} \rightarrow 0
$$

equation (I) is a diagonally dominent system

$$
\begin{align*}
10 x+y+z & =12 \\
x & =(12-y-z) \frac{1}{10} \\
2 x+12 y+z & =13 \\
y & =\frac{1}{10} \cdot(13-2 x-z) \rightarrow(\tag{2}\\
2 x+2 y & +10 z=14 \\
z & =\frac{1}{10} \cdot(14-2 x-2 y) \tag{3}
\end{align*}
$$

Put $y=0, z=0$ in eq (1)

$$
x^{(1)}=\frac{1}{10}(12-0-0)=1 \cdot 2
$$

Put $x=1.2, z=0$ in ea (2)

$$
\begin{aligned}
& y(1)=\frac{1}{10}(13-2(1.2)-0) \\
& y(1)=1.06
\end{aligned}
$$

Put $x=1.2, y=1.06$ in eq (3)

$$
\begin{aligned}
& z^{(1)}=\frac{1}{10}(14-2(1.2)-2 \cdot(1.06)) \\
& z^{(1)}=0.948 \\
& x^{(1)}=1.2,, y^{(1)}=1.06, z^{(1)}=0.948
\end{aligned}
$$

II-Iteration
Put $y=1.06, z=0.948$ in eq (1)

$$
\begin{aligned}
x^{(2)} & =\frac{1}{10}(12-1.06-0.948) \\
& =0.9992
\end{aligned}
$$

put $x=0.9992, z=0.948$ in CQ (2)

$$
\begin{aligned}
y(2) & =\frac{1}{10}(13-2(0.9992)-0.948) \\
& =1.00519
\end{aligned}
$$

put $x=0.9992 ; y=1.0058$ in eq (3)

$$
\begin{aligned}
z^{(2)} & =\frac{1}{10}(14-2(0.9992)-2(1.0051) \\
& =0.99978=0.9991 \\
x^{(2)} & =0.9992 ; y(2)=1.0054 ; y^{(2)}=0.9998
\end{aligned}
$$

III- Iteration
put $y=1.005 u, z=0.9999$ in eq (1)

$$
x^{(3)}=\frac{1}{10}(12-1.005 u-0.9999)
$$

$$
=0.99955
$$

put $x=0.999$ gs $; z=0.9991$ in eq (2)

$$
\begin{aligned}
y(3) & =\frac{1}{10}(13-2(0.9992)-0.9991) \\
& =1.0001
\end{aligned}
$$

put $x=0.9996 ; y=1.0004$ in eq (3)

$$
\begin{gathered}
z^{(3)}=\frac{1}{10}(14-2((9.99953-2(1.0001) \\
z(3)=1.0001 ; x^{(3)}=0.99955 ; y(3)=1.0001 \\
z(3)=1.0001
\end{gathered}
$$

IV. Iteration

$$
\text { put } z^{(3)}=1.0001, y^{(3)}=1.0001
$$

$$
x=\frac{1}{10}(12-1.0001-1.0001)
$$

$$
x^{(u)}=0.99998
$$

put $x^{(4)}=1$, in eq (2); $z=1.0001$.

$$
\begin{aligned}
& y=\frac{1}{10}(13-2(1)-1.0001) \\
& y(u)=0.999=1
\end{aligned}
$$

put $x=1, y=0.99=1$ in eq (3)

H.w
2.

Solve

$$
\begin{array}{ll}
27 x+6 y-z=85 & 3
\end{array}
$$

4.

$$
\begin{aligned}
& x+10 y+z=6 \\
& 10 x+9 z^{+} z=6 \\
& x+y+10 z=6
\end{aligned}
$$

Solu) 2.) Given equations

$$
\begin{aligned}
& 27 x+6 y-z=85 \\
& 6 x+15 y+2 z=72 \\
& x+y+54 z=110
\end{aligned}
$$

Equation (A) is a diagonally dominant system.

$$
\begin{align*}
& 27 x+6 y-z=85 \\
& x=(85-6 y+z) \frac{1}{27} \rightarrow 0 \tag{1}\\
& 6 x+15 y+2 z=72 \\
& y=(72-6 x-2 z) \frac{1}{15} \\
& x+y+54 z=110 \\
& z=(110-x-y) \frac{1}{54}
\end{align*}
$$

\Rightarrow pult $+y=0, z=0$ in eq (1)

$$
x^{(1)}=(85-0+0) \frac{1}{27}
$$

$$
x^{(1)^{\prime}}=3 \cdot 14815
$$

\Rightarrow put $x=314815 ; z=0$ in ca (2)

$$
\begin{aligned}
& y^{(1)}=\left(72-6(3 \cdot 148(5)-2(0)) \frac{1}{15}\right. \\
& y^{(1)}=3.54074
\end{aligned}
$$

\Rightarrow put $x=3.14815 ; y=3.54074$ in eq (3)

$$
\begin{aligned}
& z^{(1)}=(110-3.14815-3.54074) \frac{1}{54} \\
& z^{(1)}=1.9135 \\
& \therefore x^{(1)}=3.14815 ; y^{(1)}=3.54074 ; z^{(1)}=1.9135
\end{aligned}
$$

* Ir Iteration
put $[x=3.14815] ; z=1.9135 ; y=3.54074$ in (1)

$$
\begin{aligned}
x^{(2)} & =(85-6(3.54074)+1.9135) \frac{1}{27} \\
x^{(2)} & =2.4322
\end{aligned}
$$

\Rightarrow put $x=2.4322 ; z=1.9135$ in eq (2)

$$
\text { it } \begin{aligned}
x & =2.4322 ; z=12 \\
y^{\prime 2} & =(72-6(2.4322)-2(1.9135)) \frac{1}{15} \\
y(2) & =3.572
\end{aligned}
$$

\Rightarrow put $x=2.4322 ; y=3.572$ in eq (3)

$$
\begin{aligned}
z^{(2)} & =(110-2.4322-3.572) \frac{1}{54} \\
z^{(2)} & =1.9258 \\
\therefore x^{(2)} & =2.4322, y(2)=3.572, z^{(2)}=1.9258
\end{aligned}
$$

* II- Iteration

$$
\begin{aligned}
& \text { * II - Iteration } \\
& \Rightarrow \text { put } y=3.572 ; z=1.9258 \text { in eq (1) }
\end{aligned}
$$

$$
\begin{aligned}
& y=3.572 \\
& x^{(3)}=(85-6(3.572)+1.9258) \frac{1}{27} \\
&
\end{aligned}
$$

$$
x(3)=2.4257
$$

$$
\begin{aligned}
& x^{(3)}=2.4257 \\
& \Rightarrow \text { put } x=2.4257 ; z=1.9258 \text { in eq (2) } \\
& \text { (2) }
\end{aligned}
$$

$$
\begin{aligned}
& x=2.4257, z(72-6(2.4257)-2(1.9258)) \frac{1}{15} \\
& y(3)=13 \\
& u(3)=.3 .573
\end{aligned}
$$

$$
y(3)=3.573
$$

\Rightarrow put $x=2.4257 ; y=3.573$ in eq (3)

$$
\begin{aligned}
x & =2.4257 \\
z^{(\beta)} & =(110-2.4257-3.573) \frac{1}{54} \\
& =1.92595
\end{aligned}
$$

$$
x^{(3)}=2.4257 ; y(3)=3.573 ; z(3)=7.92595
$$

IV Iteration
\Rightarrow put $(x=2.4257) ; y=3.573 ; z=1.925$ in eq.

$$
\begin{aligned}
& x^{(u)}=(85-6(3.573)+1.926) \frac{1}{27} \\
& x^{(u)}=2.4255
\end{aligned}
$$

\Rightarrow put $x=2.4255 ; z=1.926$ in eq (2)

$$
\begin{aligned}
& y(u)=\left(72-6(2.4255)-2(1.926) \frac{1}{15}\right. \\
& y(u)=3.573
\end{aligned}
$$

\Rightarrow put $x=2.4255 ; y=3.573$; in eq (3)

$$
\begin{aligned}
z^{(u)} & =(110-2.4255-3.573) \frac{1}{5 u} \\
& =1.92595 \\
& =1.926 \\
\therefore x^{(u)} & =2.4255 ; y(u)=3.573 ; z(u)=1.926
\end{aligned}
$$

V- Iteration.

$$
\begin{aligned}
\Rightarrow \text { put } y & =3.573 ; z=1.926 \text { in eq } \\
x^{(5)} & =(85-6(3.573)+1.926) \frac{1}{27} \\
& =2.4255
\end{aligned}
$$

\Rightarrow put $x=2.4255 ; z=1.926$ in eq (2)

$$
\begin{aligned}
y(5) & =\left(72-6(2.4255)-2(1.926) \frac{1}{15}\right. \\
& =3.573
\end{aligned}
$$

\Rightarrow put $x=2.4255 ; y=3.573$ in eq (3)

$$
\begin{aligned}
z^{(5)} & =(110-2.4255-3.573) \frac{1}{54} \\
& =1.926
\end{aligned}
$$

4. Given Equations

$$
\begin{align*}
& x+10 y+z=6 \\
& 10 x+y+z=6 \\
& x+y+10 z=6 \\
& 10 x+y+z=6 \\
& x+10 y+z=6 \\
& x+y+10 z=6
\end{align*}
$$

Equation (A) is a diagonally dominant system

$$
\begin{align*}
& 10 x+y+z=6 \\
& x=(6-y-z) \frac{1}{10} \rightarrow 0 \tag{1}\\
& x+10 y+z=6 \\
& y=(6-x-z) \frac{1}{10} \rightarrow \text { (2) } \tag{2}\\
& x+y+10 z=6 \\
& z=(6-x-y) \frac{1}{10} \rightarrow \tag{3}
\end{align*}
$$

I- Iteration
\Rightarrow put $y=0 ; z=0$ in eq (1)

$$
\begin{aligned}
x^{(1)} & =(6-0-0) \frac{1}{10}=0.6 \\
\Rightarrow \text { put } x & =0.6 ; z=0 \text { in eq (2) } \\
y^{(1)} & =(6-0.6-0) \frac{1}{10} \\
& =0.54
\end{aligned}
$$

\Rightarrow put $x=0.6 ; y=0.54$ in eq (3)

$$
\begin{aligned}
& z^{(1)}=(6-0.6-0.5 u) \frac{1}{10} \\
&=0.486 \\
& x^{(1)}=0.6 ; y(1)=0.54 ; z(1)=0.486
\end{aligned}
$$

II- Iteration
\Rightarrow put $x=0.54 ; z=0.486$ in eq (1)

$$
\begin{aligned}
& x^{(2)}=(6-0.54-0.486) \frac{1}{10} \\
& x^{(2)}=0.4974
\end{aligned}
$$

$$
\Rightarrow \text { put } \begin{aligned}
x & =0.4974 ; z=0.486 \text { in } e q \text { (2) } \\
y^{(2)} & =(6-0.4974-0.486) \frac{1}{10} \\
& =0.502
\end{aligned}
$$

\Rightarrow put $x=0.4974 ; y=0.502$ in eq (3)

$$
\begin{aligned}
& z^{(2)}=(6-0.4974-0.502) \frac{1}{10} \\
& z^{(2)}=0.50006
\end{aligned}
$$

$$
\therefore x^{(2)}=0.4974 ; y^{(2)}=0.502 ; z^{(2)}=0.50006
$$

III - Iteration
\Rightarrow put $y=0.502 ; z=0.50006$ in eq (1)

$$
\begin{aligned}
x^{(3)} & =(6-0.502-0.50006) \frac{1}{10} \\
& =0.4998
\end{aligned}
$$

\Rightarrow put $x=0.4998 ; z=0.50006$ in eq (2)

$$
\begin{aligned}
y(3) & =(6-0.4998-0.50006) \frac{1}{10} \\
& =0.500014
\end{aligned}
$$

\Rightarrow put $x=0.4998 ; y=0.50001 \mathrm{u}$ in eq (3)

$$
\begin{aligned}
z^{(3)} & =(6-0.4998-0.50001 u) \\
& =0.500019
\end{aligned}
$$

$$
x^{(3)}=0.4998 ; y^{(3)}=0.500014 ; z^{(3)}=0.500019
$$

IV Iteration
\Rightarrow put $(x=0.4998) y=0.500014 ; z=0.500019$ in ea(1)

$$
\begin{aligned}
x^{(4)} & =(6-0.500014-0.500019) \frac{1}{10} \\
& =0.49910
\end{aligned}
$$

\Rightarrow put $x=0.49910 ; g=0.500019$ in eq (2)

$$
\begin{aligned}
y(4) & =(6-0.49910-0.500019) \frac{1}{10} \\
& =0.50009
\end{aligned}
$$

\Rightarrow put $x=0.49910 ; y=0.50009$ in eq (3)

$$
\begin{aligned}
z(u) & =(6-0.49910-0.50009) \frac{1}{10} \\
& =0.500081
\end{aligned}
$$

$$
x^{(u)}=0.49910 ; y(u)=0.50009 ; z^{(u)}=0.500081
$$

I-Iteration
\Rightarrow put $y=0.50009 ; z=0.500081$ in eq (1)

$$
\begin{aligned}
x^{(5)} & =(6-0.50009-0.500081) \frac{1}{10} \\
& =0.49910
\end{aligned}
$$

\Rightarrow put $x=0.49910 ; z=0.500081$ in eq (2)

$$
\begin{aligned}
y(5) & =(6-0.49910-0.500081) \frac{1}{10} \\
& =0.50008+9
\end{aligned}
$$

\Rightarrow put $x=0.49910 ; y=0.500082$ in eq (3)

$$
\begin{aligned}
z(5) & =(6-0.49910-0.500082) \frac{1}{10} \\
& =0.500082
\end{aligned}
$$

Variable	$15 t$	$2^{\text {nd d }}$	$3^{r d}$	$4^{\text {th }}$	$5^{\text {th }}$	$-(8)$
x	0.6	0.4974	0.4998	0.4999	0.4999	
y	0.54	0.502	0.500014	0.5000	0.5000	
z	0.486	0.50006	0.500019	0.5000	0.5000	

3. Given Equation

$$
\begin{align*}
& 8 x_{1}-3 x_{2}+2 x_{3}=20 \\
& 4 x_{1}+11 x_{2}-x_{3}=33 \\
& 6 x_{1}+3 x_{2}+12 x_{3}=36
\end{align*}
$$

Equation (A) is a diagonally dominant system

$$
\begin{align*}
& 8 x_{1}-3 x_{2}+2 x_{3}=20 \\
& x_{1}=\left(20+3 x_{2}-2 x_{3}\right) \frac{1}{8} \rightarrow 1 \tag{1}\\
& 4 x_{1}+11 x_{2}-x_{3}=33 \\
& x_{2}=\left(33-4 x_{1}+x_{3}\right) \frac{1}{11} \rightarrow(\tag{2}\\
& 6 x_{1}+3 x_{2}+12 x_{3}=36 \\
& x_{3}=\left(36-6 x_{1}-3 x_{2}\right) \frac{1}{12} \tag{3}
\end{align*}
$$

I-Iteration
\Rightarrow put $g_{2}=0 ; x_{3}=0$ in eq (1)

$$
\begin{aligned}
x_{1}^{(1)} & =(20+3(0)-2(0))_{\frac{0 t}{8}} \\
& =\frac{20}{8}=2.5
\end{aligned}
$$

\Rightarrow put $x_{1}=2.5 ; x_{3}=0$ in eq (2)

$$
\begin{aligned}
x_{2}^{(1)} & =(33-u(2.5)+0) \frac{1}{11} \\
& =2.091
\end{aligned}
$$

\Rightarrow put $x_{1}=2.5 ; x_{2}=2.09$ in 1 eq (3)

$$
\begin{aligned}
x_{3}^{(1)} & =(36-6(2.5)-3(2.091)) \frac{1}{12} \\
& =1.22725 \\
& =1.23 \quad x_{1}=2.5 ; \quad x_{2}=2.091 ; x_{3}=1.23
\end{aligned}
$$

II- Iteration
\Rightarrow put $x_{2}=2.091 ; x_{3}=1.23$ in eq (1)

$$
\begin{aligned}
x_{1}^{(2)} & =[20+3(2.091)-2(1.23)] \frac{1}{8} \\
& =2.976625 \\
x_{1} & =2.977
\end{aligned}
$$

\Rightarrow put $x_{1}=2.977 ; x_{3}=1.23$ in eq (2)

$$
\begin{aligned}
x_{2}^{(2)} & =(33-4(2.977)+1.23) \frac{1}{11} \\
& =2.0293
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \text { put } x_{1} & =2.977 ; x_{2}=2.0293 \text { in cq (3) } \\
x_{3}^{(2)} & =\left[(36-6(2.977)-3(2.0293)] \frac{1}{12}\right. \\
& =1.004175 \\
& =1.0042
\end{aligned}
$$

$$
\therefore x_{1}^{(2)}=2.977 ; x_{2}^{(2)}=2.0293 ; x_{3}^{(2)}=1.0042
$$

III- Iteration

$$
\begin{aligned}
\Rightarrow \text { put } x_{2} & =0.0293 ; x_{3}=1.0042 \text { in eq (1) } \\
x_{1}^{(3)} & =[20+3(2.0293)-2(1.0042)] \frac{1}{8} \\
& =3.009
\end{aligned}
$$

\Rightarrow put $x_{1}=3.001 ; x_{3}=1.0042$ in eq. (2)

$$
\begin{aligned}
x_{2}(3) & =(33-u(3.001)+1.0042) \frac{1}{11} \\
& =2.000018
\end{aligned}
$$

\Rightarrow put $x_{1}=3.001 ; x_{12}=2.000$ in eq (3)

$$
\begin{aligned}
& x_{3}^{(3)}=\left[(36-6(3.001)-3(2.000)] \frac{1}{12}\right. \\
&=0.9995 \\
& \therefore x_{1}^{(3)}=3.001 ; x_{2}^{(3)}=2.000 ; x_{3}^{(3)}=0.9995
\end{aligned}
$$

IV- Iteration
\Rightarrow put $x_{2}=2.000 ; x_{3}=0.9995$ in eq (1)

$$
\begin{aligned}
x_{1}^{(u)} & =(20+3(2.000)+0.9995 \\
& -2(0.9995)) \frac{1}{8} \\
& =3.000
\end{aligned}
$$

$$
\begin{aligned}
& =3.000 \\
\text { put } x_{1} & =3.000 ; x_{3}
\end{aligned}=0.9995 \text { in eq (2) }
$$

$$
\begin{aligned}
x_{2}(u) & =(33-u(3.000)+0.9995) \frac{1}{11} \\
& =1.9990=2.000
\end{aligned}
$$

\Rightarrow put $x_{1}=3.000 ; x_{2}=1.9910$ in eq (3).

$$
\begin{array}{r}
x_{3}{ }^{(u)}=(36-6(3.000)-3(1.9910)] \frac{1}{12} \\
=1.00225 \quad \therefore x_{1}(u)=3.000 ; x_{2}(u)=1.9910 \\
x_{3}(u)=1.00225
\end{array}
$$

I-Iteration
\Rightarrow put $x_{2}=1.9910 ; x_{3}=1.00225$ in eq (1)

$$
x_{1}^{(5)}=[20+3(1.9910)-2(1.00225)] \frac{1}{8}=3.800
$$

\Rightarrow put $x_{1}=3.000 ; x_{3}=1.00225$ in eq (2)

$$
\begin{aligned}
& \text { put } x_{1}=3.000, x_{3} \\
& x_{2}(5)=(33-4(3.000)+1.00225) \text { 4/ iq }=2.000
\end{aligned}
$$

\Rightarrow put $x_{1}=3.000 ; x_{2}=2.000$ in eq (3)

$$
\begin{aligned}
& \Rightarrow \quad \text { put } x_{1}=\left[(36,-6(3.000)-3(2 \cdot 000)] \frac{1}{12}=1\right. \\
& \quad x_{3}{ }^{(5)}=\left[3 x_{1}^{(5)}=13.000 ; x_{2}{ }^{(5)}=2 \cdot 000 ; x_{3}^{(5)}=1\right.
\end{aligned}
$$

variable st $^{\text {st }}$ $2^{\text {nd }}$ $3^{\text {rd }}$ $u^{\text {th }}$ $5^{\text {th }}$ x 2.5 2.977 3.001 3.000 3.000 y 2.091 2.0293 2.000 2.000 2.000 z 1.23 1.0042 09995 1.00205 1.000
solve $10 x_{1}-2 x_{9}-x_{2}-x_{4}=3 ;-2 x_{1}+10 x_{2}-x_{3}-x_{4}=15$

$p_{|1|}^{0 \mid 2018}$ Solve $10 x_{1}-2 x_{2}-x_{3}-x_{4}=3 ;-2 x_{1}+10 x_{2}-x_{3}-x_{4}=15$,
5. $-x_{1}-x_{2}+10 x_{3}-2 x_{4}=15 ;-x_{1}-x_{2}-2 x_{3}+10 x_{4}=-9$ by

Gauss- seidl method correct to three decimal places.
(by) Given equations

$$
\begin{align*}
& 10 x_{1}-2 x_{2}-x_{3}-x_{4}=3 \\
& -2 x_{1}+10 x_{2}-x_{3}-x_{4}=15 \\
& -x_{1}-x_{2}+10 x_{3}-2 x_{4}=15 \\
& -x_{1}-x_{2}-2 x_{3}+10 x_{4}=-9
\end{align*}
$$

Equation (A) is a diagonally dominant system

$$
\begin{align*}
10 x_{1} & +2 x_{2}-x_{3}-x_{4}=3 \\
x_{1} & =\frac{7}{10}\left(3+2 x_{2}+x_{3}+x_{4}\right) \rightarrow 0 \tag{1}\\
-2 x_{1} & +10 x_{2}-x_{3}-x_{4}=15 \\
x_{2} & =\left(15+2 x_{1}+x_{3}+x_{4}\right) \frac{1}{10} \rightarrow(2 \tag{2}\\
x_{3} & =\frac{1}{10}\left[15+x_{1}+x_{2}+2 x_{4}\right] \tag{3}\\
x_{4} & =\frac{1}{10}\left[-9+x_{1}+x_{2}+2 x_{3}\right] . \tag{4}
\end{align*}
$$

I- Iteration
\Rightarrow put $x_{2}=0 ; x_{3}=0 ; x_{4}=0$ in ea (1)

$$
\begin{aligned}
x_{1} & =\frac{1}{10}(3+2(0)+0+0) \\
& =0.3
\end{aligned}
$$

F) put

$$
\begin{aligned}
&=0.3 \\
& x_{1}=0.3 ; x_{3}=0 ; x_{u}=0 \text { in eq(2) } \\
& x_{2}=\frac{1}{10}(15+2(0.3)+0+0) \\
&=1.56
\end{aligned}
$$

\Rightarrow put $x_{1}=0.3, x_{2}=1.56 ; x_{4}=0$ in eq (3)

$$
x_{3}^{(1)}=\frac{1}{10}[15+0.3+1.56+0)=1.686
$$

\Rightarrow put $x_{1}=0.3 ; x_{2}=1.56, x_{3}=1.686$ in eq (4)

$$
\begin{aligned}
& x_{u}^{\prime \prime}=\frac{1}{10}(-9+0.3+1.56+2(1.686)] \\
&=-0.378 \\
& \therefore x_{1}(1)=0.3 ; x_{2}{ }^{(1)}=1.56 ; x_{3}^{(1)}=1.686 ; x_{u}^{(1)}=-0.377
\end{aligned}
$$

II-Iteration

$$
\begin{align*}
\Rightarrow \text { Put } x_{2} & =1.56 ; x_{3}=1.686 ; x_{4}=-0.37 \text { in eq (1) } \\
x_{1}^{(2)} & =\frac{1}{10}(3+2(1.56)+1.686-0.37) \\
& =0.74223 \\
\Rightarrow \text { put } x_{1} & =0.7422 ; x_{3}=1.686 ; x_{4}=-0.378 \text { in eq (2) } \\
x_{2}{ }^{(2)} & =\frac{1}{10}\left(15+2\left(0.74 \frac{22}{3}\right)+1.686-0.377\right) \\
& =1.778695 \\
\Rightarrow \text { put } x_{1} & =0.742223 ; x_{2}=1.7795 ; x_{4}=-0.377 \mathrm{in} \tag{3}
\end{align*}
$$

$$
\begin{aligned}
x_{3}(2) & =\frac{1}{10}(15+0.743+1.7795+2(-0.377) \\
& =1.6768
\end{aligned}
$$

$$
=1.6768
$$

\Rightarrow put $x_{1}=0.743 ; x_{2}=1.7795 ; x_{3}=1.6768$ in eq (4)

$$
\begin{aligned}
& \Rightarrow \text { put } x_{1}\left.\left.=0.7 u 3 ; x_{2}=1.71 .6768\right)\right) \\
& x_{u}(2)=\frac{1}{10}(-9+0.743+1.7795+2(1.61239 \\
&=-0.31239 ; x_{3}^{(2)}=1.6768 ; u^{(2)}=-0.311^{24} \\
& x_{1}{ }^{(2)}=0.743 ; x_{2}=1.779 ;
\end{aligned}
$$

II- Iteration
\Rightarrow put $x_{2}=1.779 ; x_{3}=1.6768 ; x_{4}=-0.3124$ inead

$$
\begin{aligned}
\Rightarrow \text { put } x_{2} & =1.795 ; x_{3}=1.696 ; x_{4}=-0.302 \\
x_{1}{ }^{(u)} & =\frac{1}{10}(3+2(1.795)+1.696--1302) \\
& =0.7984=0.798 \\
\Rightarrow \text { put } x_{1} & =0.798 ; x_{3}=1.696 ; x_{4}=-0.302 \text { in eq (2) }
\end{aligned}
$$

$$
x_{2}^{(u)}=\frac{1}{10}(15+2(0.798)+1.696=0.302)
$$

$$
\begin{aligned}
& =1.799 \\
\Rightarrow \text { put } x_{1} & =0.798 ; x_{2}=1.799 ; x_{u}=-0.302 \text { in eq (3) }
\end{aligned}
$$

$$
=1.799
$$

$$
\begin{aligned}
\text { ut } x_{1} & =0.798 ; x_{2}=1.799 ; 14 \\
x_{3}(u) & =\frac{1}{10}[15+0.798+1.799+2(0.302)] \\
& =1.6993=1.699
\end{aligned}
$$

N-Iteration

$$
\begin{align*}
& x_{1}^{(3)}=\frac{1}{10}(3+2(1.779)+1.6768 t-0.312 u) \\
& =0.7922 \\
& \Rightarrow \text { put } x_{1}=0.7922 ; x_{3}=1.6768 ; x_{u}=-0.312 u \text { in eq (2) } \\
& x_{2}^{(3)}=\frac{1}{10}(15+2(0.7922)+1.6768-0.312 u) \\
& =1.79488=1.795 \\
& \Rightarrow \text { put } x_{1}=0.792 ; x_{2}=1.795 ; x_{4}=-0.312 u \text { in eq (3) } \\
& x_{3}^{(3)}=\frac{1}{10}[(15+0.792+9.7952(0.312 u)) \\
& =1.696 \\
& \Rightarrow \text { put } x_{1}=0.792 ; x_{2}=1.795 ; x_{3}=1.696 \text { in eq (4) } \tag{4}\\
& x_{u}^{(3)}=\frac{1}{10}[(-9+0.792+1.795+2(1.696)] \\
& \text { put } \begin{aligned}
x_{1} & =0.792 ; x_{2}=1.7951 \\
x_{u}{ }^{(3)} & =\frac{1}{10}[(-9+0.792+1.795+2(1.696)] \\
& =-0.3021=-0.302 \\
(3) & =1.795 ; x_{3}^{(3)}=1.696 ; x_{u}^{(3)}=-0.302
\end{aligned} \\
& \begin{aligned}
x u & =-0.3021 \\
& =-0.302 \\
\therefore x_{1}(3) & =0.792 ; x_{2}^{(3)}=1.795 ; x_{3}^{(3)}=1.696 ; x_{u}^{(3)}=-0.302
\end{aligned}
\end{align*}
$$

\Rightarrow put $x_{9}=0.798 ; x_{2}=1.799 ; x_{3}=1.699$ in eq (4)

$$
\begin{aligned}
x_{u}^{(u)} & =\frac{1}{10}[-9+0.798+1.799+2(1.699)] \\
& =-3.3005 \\
& =-0.300 \\
\therefore x_{1}^{(u)} & =0.798 ; x_{2}^{(u)}=1.799 ; x_{3}^{(u)}=1.699 ; x_{u}^{(u)}=-0.30
\end{aligned}
$$

IV- Iteration

$$
\begin{aligned}
\Rightarrow \text { put } x_{2} & =1.799 ; x_{3}=1.699 ; x_{4}=-0.300 i n \mathrm{eq}(1) \\
x_{1}(5) & =\frac{1}{10}(3+2(1.799)+1.699-0.300) \\
& =0.7997=0.799 \\
\Rightarrow \text { put } x_{1} & =0.798 ; x_{3}=1.699 ; x_{4}=-0.300 \text { in eq(2) } \\
x_{2}(5) & =\frac{1}{10}(15+2(0.798)+1.699-0.300) \\
& =1.7995=1.799 .10 \text { ineq(3) }
\end{aligned}
$$

\Rightarrow put $x_{1}=0.798 ; x_{2}=1.799 ; x_{u}=-0.300$ ineq(3)

$$
\begin{aligned}
x_{3}(5) & =\frac{1}{10}[15+0.798+1.799+2[0.300)] \\
& =1.6997=1.699
\end{aligned}
$$

\Rightarrow put $x_{1}=0.798 ; x_{2}=1.799 ; x_{3}=1.699$ in eq (4)

$$
x_{u}^{(5)}=\frac{1}{10}(-9+0.798+1.799+2(1.699)]
$$

$$
=-03005=-0.300
$$

variable	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$	$u^{\text {th }}$	$5^{\text {th }}$
x_{1}	0.3	0.743	0.792	0.798	0.798
y_{2}	1.56	1.779	1.795	1.799	1.799
x_{3}	1.686	1.6768	1.696	1.699	1.699
x_{4}	-0.377	-0.3124	-0.302	-0.300	-0.300

Grans .
Solutions of Linear systems Direct fyethods

1) Gaussian Elimination fuethod

This method of solving system of n linear equations in ' n ' unknowns consists of eliminating the coefficients in such a way that the system reduces to upper triangular system which may be solved by sacleward substitution.

1. Solve the equations $2 x+y+z=10 ; 3 x+y+3 z=18 ; x+u y+9 z$. $=16$; by using Gauss elimination method.
solus Given Equations

$$
\left.\begin{array}{l}
2 x+y+z=10 \\
3 x+2 y+3 z=18 \\
x+4 y+9 z=16
\end{array}\right]
$$

system (1) can be expressed in the form $A x=B$
where

$$
A^{A}=\left[\begin{array}{lll}
2 & 1 & 1 \\
3 & 2 & 3 \\
1 & 4 & 9
\end{array}\right] ; x=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] ; B=\left[\begin{array}{c}
10 \\
18 \\
16
\end{array}\right]
$$

Argumented matrix

$$
\begin{aligned}
& {[A B] }=\left[\begin{array}{cccc}
2 & 1 & 1 & 10 \\
3 & 2 & 3 & 18 \\
1 & 4 & 9 & 16
\end{array}\right] \\
& \sim\left[\begin{array}{cccc}
2 & 1 & 1 & 10 \\
0 & 1 & 3 & 6 \\
0 & 7 & 17 & 22
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow 2 R_{2}-3 R_{1} \\
R_{3} \rightarrow 2 R_{3}-R_{1} \\
\end{array} \\
& \sim\left[\begin{array}{cccc}
2 & 1 & 1 & 10 \\
0 & 1 & 3 & 6 \\
0 & 0 & -4 & -20
\end{array}\right] R_{3} \rightarrow R_{3}-7 R_{2}
\end{aligned}
$$

which is a upper triangular matrix

$$
\begin{aligned}
2 x+y+z & =10 ; y+3 z=6 \\
-4 z & =-20 \\
z & =5 \\
y+3(5) & =6, \quad 2 x-9+5=10 \\
y & =6-15 \quad 2 x=14 \\
y & =-9 \\
x=7 ; y & =-9 ; z=5
\end{aligned}
$$

2. Solve $3 x+y-z=3 ; 2 x-b y+z=-5 ; \quad x-2 y+9 z=8$ by Gaussian elimination method

Given Equations

$$
\left.\begin{array}{l}
3 x+y-z=3 \\
2 x-8 y+z=-5 \\
x-2 y+9 z=8
\end{array}\right] \text { (1) }
$$

system (1) can be expressed in the form $A X=B$

$$
A=\left[\begin{array}{ccc}
3 & 1 & -1 \\
2 & -8 & 1 \\
1 & -2 & 9
\end{array}\right] ; X=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] ; B=\left[\begin{array}{c}
3 \\
-5 \\
8
\end{array}\right]
$$

Argumented matrix

$$
\begin{aligned}
{\left[A B_{1}\right] } & =\left[\begin{array}{cccc}
3 & 1 & -1 & 3 \\
2 & -8 & 1 & -5 \\
1 & -2 & 9 & 8
\end{array}\right] \\
& \sim\left[\begin{array}{cccc}
3 & 1 & -1 & 3 \\
0 & -26 & 5 & -21 \\
0 & -7 & 28 & 21
\end{array}\right] R_{2} \rightarrow 3 R_{2}-2 R_{1} \rightarrow 3 R_{3}-R_{1} \\
& \sim\left[\begin{array}{cccc}
3 & 1 & -1 & 3 \\
0 & -26 & 5 & -21 \\
0 & -1 & 4 & 3
\end{array}\right] R_{3} \rightarrow \frac{R_{3}}{7}
\end{aligned}
$$

$$
\begin{aligned}
& \sim\left[\begin{array}{cccc}
3 & 1 & -1 & 3 \\
0 & -26 & 5 & -21 \\
0 & 0 & 99 & 99
\end{array}\right] R_{3} \rightarrow 26 R_{3}-R_{2} \begin{array}{ccc}
& \begin{array}{c}
1 \\
26
\end{array} & 2 \\
\frac{3}{78} & \frac{4}{104} \\
\text { which is upper triangular matrix } & \frac{21}{99} & \frac{5}{99}
\end{array} \\
& 3 x+y-z=3
\end{aligned}
$$

$$
\begin{aligned}
-26 y+5 z & =-21 \\
99 z & =94 \\
z & =1 \\
-26 y+5 & =-21 \\
-26 y & =-21-5 \\
-26 y & =-26 \\
y & =1
\end{aligned}
$$

$$
3 x+1-1=3
$$

$$
x=1
$$

$$
\therefore \quad x=1, \quad y=1,2=1
$$

3. Solve $2 x+y+z=10 ; 3 x+2 y+3 z=18 ; x+4 y+9 z=16$ by using Gauss. Jordan-method (only row operations)
solus Given Equations

$$
\begin{aligned}
& 2 x+y+z=10 \\
& 3 x+2 y+3 z=18 \\
& x+4 y+9 z=16
\end{aligned} \rightarrow 0
$$

system (1) can be expressed in the form $A x=B$ where

$$
\begin{aligned}
& {\left[\begin{array}{ll}
A & A
\end{array}\right] }=\left[\begin{array}{llll}
2 & 1 & 1 & 10 \\
3 & 2 & 3 & 18 \\
1 & 4 & 9 & 16
\end{array}\right] \\
& \sim\left[\begin{array}{llll}
2 & 1 & 1 & 10 \\
0 & 1 & 3 & 6 \\
0 & 7 & 17 & 22
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow 2 R_{2}-3 R_{1} \\
R_{3} \rightarrow 2 R_{3}-R_{1} \\
\end{array} \\
& \sim\left[\begin{array}{cccc}
2 & 1 & 1 & 10 \\
0 & 1 & 3 & 6 \\
0 & 0 & -4 & -20
\end{array}\right] \begin{array}{l}
R_{3} \rightarrow R_{3}-7 R_{2}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \sim\left[\begin{array}{cccc}
2 & 1 & 1 & 10 \\
0 & 1 & 3 & 6 \\
0 & 0 & 1 & 5
\end{array}\right] R_{3} \rightarrow R_{3} /-4 \\
& \sim\left[\begin{array}{cccc}
2 & 1 & 0 & 5 \\
0 & 1 & 0 & -9 \\
0 & 0 & 1 & 5
\end{array}\right] \cdot \begin{array}{l}
R_{1} \rightarrow R_{1}-R_{3} \\
R_{2} \rightarrow R_{2}-3 R_{3} \\
\end{array} \sim\left[\begin{array}{cccc}
2 & 0 & 0 & 14 \\
0 & 1 & 0 & -9 \\
0 & 1 & 1 & 5
\end{array}\right] \\
& \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 7 \\
0 & 1 & 0 & -9 \\
0 & 0 & 1 & 5
\end{array}\right] R_{1}-R_{2} \\
& x=7 ; y=-9 ; z=5
\end{aligned}
$$

HeW.
4. Solve the equations $x+y+z=6 ; 3 x+3 y+u z=20$; $2 x+y+3 z=13$; using partial pivoting Gaussian elimination fuethod.
Solus) Given Equations

$$
\begin{aligned}
& x+y+z=6 \\
& 3 x+3 y+4 z=20 \\
& 2 x+y+3 z=13
\end{aligned}
$$

system (1) can be expressed in the form
$A x=B$ where

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
3 & 3 & 4 \\
2 & 1 & 3
\end{array}\right] ; x=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] ; B=\left[\begin{array}{c}
6 \\
20 \\
13
\end{array}\right]
$$

argumented matrix

$$
[A B]=\left[\begin{array}{cccc}
1 & 1 & 1 & 6 \\
3 & 3 & 4 & 20 \\
2 & 1 & 3 & 13
\end{array}\right]
$$

$$
\begin{aligned}
& \sim\left[\begin{array}{cccc}
1 & 1 & 1 & 6 \\
0 & 0 & 1 & 2 \\
0 & -1 & 1 & 1
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow R_{2}-3 R_{1} \\
R_{3} \rightarrow R_{2}-2 R_{1}
\end{array} \\
& \sim\left[\begin{array}{cccc}
1 & 1 & 6 \\
0 & -1 & 1 & 1 \\
0 & 0 & 1 & 2
\end{array}\right] \quad \begin{array}{l}
R_{2} \leftrightarrow R_{3}
\end{array}
\end{aligned}
$$

which is a upper triangular matrix

$$
\begin{aligned}
& x+y+z=6 ; x+1+2=6 \\
&-x y+z=1 ;-y+2=1 ; \\
& z=2-y=-1 ; \\
& y=1 ;
\end{aligned}
$$

5. Solve the Equations $3 x+y+2 z=3 ; 2 x-3 y-z=-3$; $x+2 y+z=4$ by using Gauss Elimination method solus) Given Equations

$$
\left.\begin{array}{l}
3 x+y+2 z=3 \\
2 x-3 y-z=-3 \\
x+2 y+z=4
\end{array}\right]
$$

system $1(1)$ can be expressed in the form $A X=B$.
where $A=\left[\begin{array}{ccc}3 & 1 & 2 \\ 2 & -3 & -1 \\ 1 & 2 & 1\end{array}\right] ; X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right] ; B=\left[\begin{array}{l}3 \\ -3 \\ 4\end{array}\right]$
Argumented matrix

$$
\begin{aligned}
{[A B] } & =\left[\begin{array}{cccc}
3 & 1 & 2 & 3 \\
2 & -3 & -1 & -3 \\
1 & 2 & 1 & 4
\end{array}\right] \\
& \sim\left[\begin{array}{cccc}
1 & 2 & 1 & 4 \\
2 & -3 & -1 & -3 \\
3 & 1 & 2 & 9
\end{array}\right] R_{1} \leftrightarrow R_{3} \\
& \sim\left[\begin{array}{cccc}
1 & 2 & 1 & 4 \\
0 & -7 & -3 & -11 \\
0 & -5 & -1 & -9
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow R_{2}-2 R_{1} \\
R_{3} \rightarrow R_{3}-3 R_{1}
\end{array}
\end{aligned}
$$

$$
\left.\sim\left[\begin{array}{cccc}
1 & 2 & 1 & 4 \\
0 & -7 & -3 & -11 \\
0 & 0 & 8 & -8
\end{array}\right] \begin{array}{c}
1 \\
R_{3} \rightarrow \\
7 R_{3}-5 R_{2}
\end{array}\right]
$$

which is on upper triangular matrix

$$
\begin{array}{rlrl}
x+2(2)-1=4 ; & & x+2 y+z=4 & \\
x+4-1=4 & -7 y-3 z=-11 & ; & -7 y-3(-1)=-11 \\
x=1 & 8 z=-8 & -7 y+3=-11 \\
\therefore x=1 ; y=2 ; z & =-1 & -7 y=-14 \\
\therefore x & y=2
\end{array}
$$

6. Solve the Equations $10 x+y+z=12 ; 2 x+10 y+z=13$ and $x+y+5 z=7$ by Gauss - Jordan Method Solve Given Equations

$$
\begin{aligned}
& 10 x+y+z=12 \\
& 2 x+10 y+z=13 \\
& x+y+5 z=7
\end{aligned} \rightarrow \text { (1) }
$$

system (1) can be expressed in the form

$$
\begin{aligned}
& A x=B \\
& A=\left[\begin{array}{ccc}
10 & 1 & 1 \\
2 & 10 & 1 \\
1 & 1 & 5
\end{array}\right] ; x^{2}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] ; B=\left[\begin{array}{c}
12 \\
13 \\
7
\end{array}\right]
\end{aligned}
$$

Argumented matrix

$$
\begin{aligned}
{[A B] } & =\left[\begin{array}{cccc}
10 & 1 & 1 & 12 \\
2 & 10 & 1 & 13 \\
1 & 1 & 5 & 7
\end{array}\right] \\
& \sim\left[\begin{array}{cccc}
10 & 1 & 1 & 12 \\
0 & 49 & 4 & 53 \\
0 & 9 & 49 & 58
\end{array}\right] \\
& \sim\left[\begin{array}{cccc}
10 & 1 & 1 & 1 \\
0 & 49 & 4 & 5 B \\
0 & 0 & 2365 & 2365
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow 5 R_{2}-R_{1} \\
R_{3} \rightarrow 10 R_{3}-R_{1} \\
R_{3} \rightarrow 49 R_{3}-9 R_{2}
\end{array} \\
& \sim\left[\begin{array}{cccc}
20 & 1 & 1 & 1 \\
1
\end{array}\right] \quad R_{2} \leftrightarrow
\end{aligned}
$$

$$
\left.\begin{array}{l}
\sim\left[\begin{array}{cccc}
1 & 1 & 5 & 7 \\
2 & 10 & 1 & 13 \\
10 & 1 & 1 & 12
\end{array}\right] R_{1} \leftrightarrow R_{3} \\
\sim\left[\begin{array}{cccc}
1 & 1 & 5 & 7 \\
0 & 8 & -9 & -1 \\
0 & -9 & -49 & -58
\end{array}\right] R_{2} \rightarrow R_{2}-2 R_{1} \\
R_{3} \rightarrow R_{3}-10 R_{1} \\
\end{array} \begin{array}{cccc}
1 & -8 & -44 & -51 \\
0 & 8 & -9 & -1 \\
0 & -9 & -49 & -58
\end{array}\right] R_{1} \rightarrow R_{1}+R_{3} .
$$

7. Solve the Equations
$10 x_{1}+x_{2}+x_{3}=12 ; x_{1}+10 x_{2}-x_{3}=10$ and $x_{1}-2 x_{2}+10 x_{3}$
$=9$ by Gauss - Jordan method

Solus Given Equations

$$
\begin{align*}
& 10 x_{1}+x_{2}+x_{3}=12 \\
& x_{1}+10 x_{2}-x_{3}=10 \\
& x_{1}-2 x_{2}+10 x_{3}=9
\end{align*}
$$

system (1) can be expressed in the form $A X=B$

$$
A=\left[\begin{array}{ccc}
10 & 1 & 1 \\
1 & 10 & -1 \\
1 & -2 & 10
\end{array}\right] ; x=\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right] ; B=\left[\begin{array}{c}
12 \\
10 \\
9
\end{array}\right]
$$

Argumented matrix

$$
\begin{aligned}
{[A B] } & =\left[\begin{array}{cccc}
10 & 1 & 1 & 12 \\
1 & 10 & -1 & 10 \\
1 & -2 & 10 & 9
\end{array}\right] \\
& \sim\left[\begin{array}{cccc}
1 & -2 & 10 & 9 \\
1 & 10 & -1 & 10 \\
10 & 1 & 1 & 12
\end{array}\right] R_{1} \rightarrow R_{3} \\
& \sim\left[\begin{array}{cccc}
1 & -2 & 10 & 9 \\
0 & 12 & -11 & 1 \\
0 & 21 & -99 & -78
\end{array}\right] R_{2} \rightarrow R_{2}-R_{1} \\
& \sim\left[\begin{array}{cccc}
9 & -2 & 10 & 9 \\
0 & 12 & -11 & 1 \\
0 & 7 & -33 & -26
\end{array}\right] R_{3}-10 R_{1} \\
& \sim\left[\begin{array}{cccc}
1 & -2 & 10 & 9 \\
0 & 12 & -11 & 1 \\
0 & 0 & -319 & -319
\end{array}\right] R_{3} \rightarrow 12 R_{3}-7 R_{2} \\
& \sim\left[\begin{array}{cccc}
1 & -2 & 10 & 9 \\
0 & 12 & -11 & 1 \\
0 & 0 & 1 & 1
\end{array}\right] R_{3} \rightarrow \frac{R_{3}}{-319} \\
& \sim\left[\begin{array}{cccc}
1 & -2 & 10 & 9 \\
0 & 12 & 0 & 12 \\
0 & 0 & 1 & 1
\end{array}\right] \quad R_{2} \rightarrow \begin{array}{l}
R_{2}+11 R_{3}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \sim\left[\begin{array}{cccc}
1 & -2 & 10 & 9 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 9
\end{array}\right] R_{2} \rightarrow \frac{R_{2}}{12} \\
& \sim\left[\begin{array}{cccc}
1 & 0 & 10 & 21 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right] R_{1} \rightarrow R_{1}+2 R_{2} \rightarrow \\
& \sim\left[\begin{array}{llll}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right] R_{1} \rightarrow R_{1}-10 R_{3} \\
& x=9 ; X_{2}=1 ; R_{3}=1
\end{aligned}
$$

8. Solve the system of equations by Gauss-seidel method $20 x+y-2 z=17 ; 3 x+20 y-z=-18 ; 2 x-3 y+20 z$ $=25$
Sou Given Equations

$$
\begin{align*}
& 20 x+y-2 z=17 \\
& 3 x+20 y-z=-18 \\
& 2 x-3 y+20 z=25
\end{align*}
$$

Equation (\rightarrow can be expressed (in the form $A X=B$ where $A=\left[\begin{array}{ccc}20 & 1 & -2 \\ 3 & 20 & -1 \\ 2 & -3 & 20\end{array}\right] ; X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right] ; B=\left[\begin{array}{c}17 \\ -18 \\ 25\end{array}\right]$
Arg] equation $(\Theta$ is a diagonally dominant

$$
\begin{align*}
& x=(17-y+2 z) \frac{1}{20} \rightarrow(1) \\
& y=(-18-3 x+z) \frac{1}{20} \rightarrow \tag{2}\\
& z=(25-2 x+3 y) \frac{1}{20} \rightarrow \tag{3}
\end{align*}
$$

I- Iteration
\Rightarrow put $y=0 ; z=0$ in eq (1)

$$
\begin{aligned}
& g=0, z=0 \\
& x^{(1)}=(17-0+2(0)) \frac{1}{20}=0.85
\end{aligned}
$$

\Rightarrow put $x=0.85 ; z=0$ in eq (2)

$$
\begin{aligned}
y(1) & =(-18-3(0.85)+0) \frac{1}{20} \\
& =-1.0275
\end{aligned}
$$

\Rightarrow put $x=0.85 ; y=-1.0275$ in eq (3)

$$
\begin{aligned}
& z^{(1)}=(25-2(0.85)+3(-1.0275)) \frac{1}{20} \\
&=1.010875 \\
&=1.0109 \\
& x^{(1)}=0.85 ; y^{(1)}=-1.0275 ; \quad z^{(1)}=1.0109
\end{aligned}
$$

II- Iteration.
\Rightarrow put $y=-1.0275 ; z=1.0109$ in eq (1)

$$
\begin{aligned}
x^{(2)} & =(17+1.0275+2(1.0109)) \frac{1}{20} \\
& =1.002465 \\
& =1.0025
\end{aligned}
$$

\Rightarrow put $x=1.0025 ; z=1.0109$ in eq (2)

$$
\begin{aligned}
g(2) & =(-18-3(1.0025)+1.0109) \frac{1}{20} \\
& =-0.99983 \\
& =-0.9998=-0.9910
\end{aligned}
$$

\Rightarrow put $x=1.0025 ; y=r 0.9910$ in eq (3).

$$
\begin{aligned}
z^{(2)} & =\left[(25-2(1.0025) * 3(0.9910)] \frac{1}{20}\right. \\
& =2: 0011 \\
\therefore x^{(2)} & =1.0025 ; y^{(2)}=-0.9990 ; z^{(2)}=1.0011
\end{aligned}
$$

III - Iteration

$$
\Rightarrow \text { put } y=-0.9910 ; z=1.0011 \text { in eq (1) }
$$

$$
x^{(3)}=(17+0.9910+2(1.0011)) \frac{1}{20}
$$

$$
\begin{aligned}
& =0.99966 \\
& =0.999=1: 00
\end{aligned}
$$

\Rightarrow put $x=1 ; z=1.0011$ in eq (2)

$$
\begin{aligned}
y^{(3)} & =(-18-3(1)+1.0011) \frac{1}{20} \\
& =-0.9999445 \\
& =-1.000 .
\end{aligned}
$$

\Rightarrow put $x=1 ; y=-1$ in eq (3)

$$
\begin{aligned}
z^{(3)} & =(25-2(1)-3(1)) \frac{1}{20} \\
& =1 \\
\therefore x^{(3)} & =1 ; y^{(3)}=-1 ; z^{(3)}=1
\end{aligned}
$$

IV- Iteration

$$
\begin{aligned}
\Rightarrow \text { put } y & =1 ; z=1 \text { in eq } \\
x^{(u)} & =(17 \pm 1+2(1)) \frac{1}{20} \\
& =0.99=1
\end{aligned}
$$

\Rightarrow put $x=1 ; z=1$ in eq (2)

$$
\begin{aligned}
y^{(u)} & =(-18-3(1)+1) \frac{1}{20} \\
& =-1
\end{aligned}
$$

\Rightarrow put $x=1 ; y=-1$ in eq (3)

$$
\begin{array}{rl}
z^{(u)} & =(25-2(1)-3) \frac{1}{20} \\
& =1 \\
\therefore x^{(u)} & =1 ; y^{(u)}=-1 ; z(u)=1 \\
\hline \text { Variable } & 1^{\text {st }} \\
x & 0.815 \\
y & -7.0275 \\
z & 1.0109 \\
2^{\text {nd }} & 1.0025 \\
1.0007 & 1 \\
\text { rd } & u^{\text {th }} \\
\hline
\end{array}
$$

9. Solve the following system of equations by using Gauss. seidel method correct to three decimal places. $8 x-3 y+2 z=20 ; 4 x+11 y-z=33 ; \quad 6 x+3 y+12 z$
Solus Given Equations

$$
\left.\begin{array}{l}
8 x-3 y+2 z=20 \\
4 x+11 y-z=33 \\
6 x+3 y+12 z=35
\end{array}\right] \rightarrow \text { (A) }
$$

system (A) is a diagonally dominant system where

$$
\begin{align*}
& x=\frac{1}{8}(20+3 y-2 z) \tag{1}\\
& y=\frac{1}{11}(33-4 x+z) \tag{2}\\
& z=\frac{1}{12}(35-6 x-3 y) \tag{3}
\end{align*}
$$

I- Iteration

$$
\begin{aligned}
\Rightarrow \text { put } x & =0 ; z=0 \text { in eq }(1) \\
x^{(1)} & =\frac{1}{8}(20+3(0)-2(0)) \\
& =2.5
\end{aligned}
$$

\Rightarrow put $x=2.5 ; z=0$ in eq (2)

$$
\begin{aligned}
y^{(1)} & =\frac{1}{11}(33-u(2.5)+0) \text { in }=2.09090 \\
& =2.091
\end{aligned}
$$

\Rightarrow put $x=2.5 ; y=2.091$ in eq (3)

$$
\begin{aligned}
z^{(1)} & =\frac{1}{12}(35-6(2.5)-3(2,091)) \\
& =1.14439166=1.1444 \\
\therefore x^{(1)} & =2.5 ; y^{(1)}=2.091 ; z^{(1)}=1.444
\end{aligned}
$$

I-Iteration

$$
\begin{aligned}
\Rightarrow \text { put }(x & =2.5) y=2.091 ; z=1.4 u u \text { in eq (1) } \\
x^{(2)} & =\frac{1}{8}(20+3(2.091)-2(1 . \text { uuu) }) \\
& =2.923125 \\
& =2.923
\end{aligned}
$$

\Rightarrow put $x=2.923 ; z=1$.u4u in eq (2)

$$
\begin{aligned}
y^{(2)} & =\frac{1}{11}(33-u(2.923)+1.444) \\
& =2.0683636 \\
& =2.068
\end{aligned}
$$

\Rightarrow put $x=2.923 ; y=2.068$ in eq (3)

$$
\begin{aligned}
z^{(2)} & =\frac{1}{12}(35-6(2.923)-3(2.068)) \\
& =0.938166 \\
& =0.938 \\
\therefore x^{(2)} & =2.923 ; y^{(2)}=2.068 ; z^{(2)}=0.938
\end{aligned}
$$

III- Iteration
\Rightarrow put $y=2.068 ; z=0.938$ in eq (1)

$$
\begin{aligned}
x^{(3)} & =\frac{1}{8}(20+3(2.068)-2(0.938)) \\
& =3.041 \\
\Rightarrow \text { put } x & =3.041 ; z=0.938 \text { in eq (2) }
\end{aligned}
$$

$$
\begin{aligned}
y^{(3)} & =\frac{1}{11}(33-4(3.041)+0.938) \\
& =1.9794545=1.979
\end{aligned}
$$

\Rightarrow put $x=3.041 ; y=1.979$ in eq (3)

$$
\begin{aligned}
z^{(3)} & =\frac{1}{12}(35-6 .(3.041)-3(1.979)) \\
& =0.9014166=0.901
\end{aligned}
$$

$$
\therefore x^{(3)}=3.041 ; y^{(3)}=1.979 ; z^{(3)}=0.901
$$

IV - Iteration
\Rightarrow put $y=1.979 ; z=0.901$ in eq (1)

$$
\begin{aligned}
x^{(u)} & =\frac{1}{8}(20+3(1.979)-2(0.901)) \\
& =3.016875 \\
& =3.017
\end{aligned}
$$

\Rightarrow put $x=3.017 ; z=0.90$ r in $e q$ (2)

$$
\begin{aligned}
y^{(u)} & =\frac{1}{11}(33-u(3.017)+0.901) \\
& =1.984818 \\
& =1.985
\end{aligned}
$$

\Rightarrow put $x=3.017 ; y=1.985$ in eq (3)

$$
\begin{aligned}
& g(u)=\frac{1}{12}(35-6(3.017)-3(1.985)) \\
&=0.9119166 \\
&=0.912 \\
& x^{(u)}=3.017 ; y^{(u)}=1.985 ; z(u)=0.912
\end{aligned}
$$

IV - Iteration
\Rightarrow put $y=1.985 ; z=0.912$ in eq (1)

$$
\begin{aligned}
x^{(5)} & =\frac{1}{8}(20+3(1.985)-2(0.912)) \\
& =3 \cdot 016375=9.016^{\prime}
\end{aligned}
$$

\Rightarrow put $x=3.016 ; z=0.912$ in eq (2)

$$
\begin{aligned}
y^{(5)} & =\frac{1}{11}(33-4(3.016)+0.912) \\
& =1.9861818 \\
& =1.986
\end{aligned}
$$

\Rightarrow put $x=3.016 ; y=1.986$; in eq (3)

$$
\begin{aligned}
3^{(5)} & =\frac{1}{12}(35-6(3.016)-3(1.986)) \\
& =0.9121666 \\
& =0.912 \\
\therefore x^{(5)} & =3.016 ; y^{(5)}=1.986 ; z^{(5)}=0.912
\end{aligned}
$$

II-Iteration
\Rightarrow put $y=1.986 ; z=0.912$ in eq (1)

$$
\begin{aligned}
x^{(6)} & =\frac{1}{8}(20+3(1.986)-2(0.912)) \\
& =3.01675=3.016
\end{aligned}
$$

\Rightarrow put $x=3.016 ; z=0.912$ in eq (2)

$$
\begin{aligned}
y(6) & =\frac{1}{11}(33-4 \cdot(3.016)+(0.912)) \\
& =1.654545 \quad 1.98618 \\
& =1.655 \quad 1.986
\end{aligned}
$$

\Rightarrow put $x=3.016 ; y=1.986$ in eq (3)

$$
\begin{aligned}
z^{(6)} & =\frac{1}{12}(35-6(3.016)-3(1.986)) \\
& =0.9121666 \\
& =0.912
\end{aligned}
$$

$=0.912$
$x^{(6)}=0.016 ; y^{(6)}=1.986 ; z(6)=0.912$

Variable	I	II	III	IV	I
x	2.5	2.923	3.041	3.017	3.016
y	2.091	2.068	1.979	1.985	1.986
z	1.444	0.938	0.901	0.912	0.986

got unit. IL Interpolation
$28 / 6118$ uni - -
Since $y=f(x)$ be the given function. The given function defined in the interval (a, b) then it is called "interpolation".
Consider x takes the values $x_{0}, x_{1}, x_{2}, x_{3}, x_{4} \ldots, x_{n}$ the corresponding y-values are $y_{0}, y_{1}, y_{2}, y_{3}, y_{4} \ldots, y_{n}$ respectively. And the differences of x axe 's ' h ' then

$$
\begin{aligned}
& x_{1}-x_{0}=h, x_{2}-x_{1}=h, x_{3}-x_{2}=h, \ldots, x_{n}-x_{n-1}=h \\
\Rightarrow & x_{1}=x_{0}+h . \\
\Rightarrow & x_{2}=x_{1}+h \Rightarrow x_{2}=\left(x_{0}+h\right) \text { th } \\
& x_{2}=x_{0}+2 h
\end{aligned}
$$

$$
\Rightarrow x_{3}=x_{2}+h \Rightarrow x_{3}=\left(x_{0}+2 h\right)+h
$$

$$
\Rightarrow x_{n-}-x_{n-1}=h \Rightarrow x_{n}=x_{0}+n h
$$

Given, $y=f(x)$

$$
\begin{gathered}
y_{0}=f\left(x_{0}\right) \\
y_{1}=f\left(x_{1}\right) \\
y_{1}=f\left(x_{0}+h\right) \\
y_{2}=f\left(x_{2}\right) \\
=f\left(x_{0}+2 h\right) \\
y_{3}=f\left(x_{3}\right) \\
=f\left(x_{0}+3 h\right) \\
y_{n}=f\left(x_{n}\right) \\
y_{n}=f\left(x_{0}+n h\right)
\end{gathered}
$$

The differences
$y_{1}-y_{0}, y_{2}-y_{1}, y_{3}-y_{2}, y_{4}-y_{3}, \ldots$ are represented by
$\Delta y_{0}, \Delta y_{1}, \Delta y_{2}, \Delta y_{3}, \ldots$ respectively are called first order forward ditlevences I and Δ iss called forward difference operator.
The differencens
$\Delta y_{1}-\Delta y_{0}, \Delta y_{2}-\Delta y_{1}, \Delta y_{3}-\Delta y_{2}, \ldots$ are 'represented by $\Delta^{2} y_{0}, \Delta^{2} y_{1}, \Delta^{2} y_{2} \ldots$ are called secondiorder "onward differences"
The differences
$\Delta^{2} y_{1}-\Delta^{2} y_{0}, \Delta^{2} y_{2}-\Delta^{2} y_{1}, \Delta^{2} y_{3}-\Delta^{2} y_{2}, \ldots$, are represented by $\Delta_{y_{0}}^{3}, \Delta^{3} y_{1}, \Delta^{3} y_{2}, \ldots$ respectively are called third order forward differences.
The differences $y_{1}-y_{0}, y_{2}-y_{1}, y_{3}-y_{2}, y_{4}-y_{3}, \ldots$ are represented by $\nabla y_{1}, \nabla y_{2}, \nabla y_{3}, \nabla y_{4}$ joferencens and ∇ respectively are called first order backward differencers and " ∇ ' is called Backward dillerence operator.
The differences $\nabla y_{2}-\nabla y_{1}, \nabla y_{3}-\nabla y_{2}, \nabla y_{4}-\nabla y_{3}, \ldots \ldots$ are represented by $\nabla^{2} y_{2}, \nabla^{2} y_{3}, \nabla^{2} y_{4}, \ldots$ respectively are called second order backward differences.
The differences $\nabla^{2} y_{3}+\nabla^{2} y_{2}, \nabla^{2} y_{u}-\nabla^{2} y_{3}, \ldots$ are repre sented by $\Delta^{3} y_{3}, \Delta^{3} y_{4}, \nabla^{3} y_{5}, \ldots$ respectively are called third order backward differences.
Date
110718
The differences $y_{1}-y_{0}, y_{2}-y_{1}, y_{3}-y_{2}, y_{4}-y_{3}, \ldots$, the represented by small (d) $\delta \delta_{y / 2}, \delta y_{3 / 2}, \delta y_{5 / 2}, \delta y_{7 / 2} \ldots$. respectively are called central differences and ' δ is called central difference operator.
The differences $\delta y_{3 / 2}-\delta y_{1 / 2}, \delta y_{5 / 2}-\delta y_{3 / 2}, \delta y_{7 / 2}=\delta y_{5 / 2} \ldots$ are represented by $\delta_{y_{1}}^{2}, \delta^{2} y_{2}, \delta \delta_{3}^{2}, \ldots$, respectively are called second order central differences

$$
\frac{3}{2}+\frac{1}{2}=
$$

Similarly $\delta_{y_{2}}^{2}-\delta^{2} y_{1}, \delta^{2} y_{3}-\delta_{y_{2}}^{2}, \delta y_{4}^{2}-\delta_{3}^{2}-\delta^{2}$ - are represent ted by $\delta_{y_{3 / 2}}^{3}, \delta_{y_{5 / 2}}^{3}, \delta_{y_{7 / 2}}^{3}, \ldots .$. respectively are called the third onden central differences Shifting Operator

Since ' E ' is called shifting operator. It shirts the given function into the next level.
Cons Therefore

$$
\begin{aligned}
& E y_{0}=y_{1} \Rightarrow E f\left(x_{0}\right)=f\left(x_{1}\right) \\
& E f\left(x_{0}\right)=f\left(x_{0}+h\right) \\
& E y_{2} \Rightarrow \\
& E f\left(x_{1}\right)=f\left(x_{2}\right) \\
& E f\left(x_{0}+h\right)=f\left(x_{0}+2 h\right) \\
& E \cdot E f\left(x_{0}\right)=f\left(x_{0}+2 h\right) \\
& E^{2} f\left(x_{0}\right)=f\left(x_{0}+2 h\right) \\
& E^{n} f\left(x_{0}\right)=f\left(x_{0}+n h\right)
\end{aligned}
$$

Similarly $E^{3} f\left(x_{0}\right)=f\left(x_{0}+3 h\right)$
Therefore $E^{n} f\left(x_{0}\right)=f(x+n h)$,
Note
Since $E^{n} f(x)=f(x+n h)$
put $n=-n \Rightarrow E^{-n} f(x)=f(x+(-n) h)$

$$
\begin{aligned}
& n \Rightarrow E^{-n f(x)}=t(x)=f(x-n h) \\
& E^{-n} f(x)
\end{aligned}
$$

Book Work
Since we know the $y_{1}-y_{0}=4 y_{0}$

$$
\begin{equation*}
\text { and } E y_{0}=y_{1} \tag{1}
\end{equation*}
$$

from (1) : (2)

$$
\begin{aligned}
E y_{0}-y_{0} & =\Delta y_{0} \\
(E-1) y_{0} & =\Delta y_{0} \\
E-1 & =4 \\
E & =1+\Delta
\end{aligned}
$$

Relation between S.0 and foreword differences Since we know that $y_{1}-y_{0}=\nabla y_{1} \rightarrow$ (1) we know and $E y_{0}=y_{1}$

$$
\begin{equation*}
\Rightarrow y_{0}=E^{-1} y_{1} \tag{2}
\end{equation*}
$$

from (1) s (2)

$$
\begin{aligned}
y_{1}-E^{-1} y_{1} & =\nabla y_{1} \\
y_{1}\left(1-E^{-1}\right) & =\nabla y_{1} \\
1-E^{-1} & =\nabla \\
F^{-1} & =1-\nabla
\end{aligned}
$$

Relation between shifting operator and backward differences
Since we know that

$$
\begin{gathered}
y_{1}-y_{0}=\delta y_{1 / 2} \rightarrow \\
\Rightarrow y_{\frac{1}{2}+\frac{1}{2}}-\frac{y_{1}-\frac{1}{2}}{}=\delta y_{1 / 2} \quad \because \\
E^{\prime \prime 2} y_{1 / 2}-E^{-1 / 2} y_{1 / 2}=\delta y_{1 / 2} \quad F^{\prime} y_{3}=y_{3}+1 \\
E^{\prime} y_{0}=y_{0+1} \\
y_{1 / 2}\left[E^{1 / 2}-E^{-1 / 2}\right]=\delta y_{1 / 2} \\
\\
\left.E^{\prime / 2}-E^{-1 / 2}=\delta\right]
\end{gathered}
$$

Relation between central difference and shifting operator

Average Operator
' μ ' is called Average operator. such that

$$
\begin{aligned}
& \mu y_{n}=\frac{y_{n+1 / 2}+y_{n-\frac{1}{2}}}{2} \\
& \mu y_{n}=\frac{E^{\prime \prime 2} y_{n}+E^{-1 / 2} y_{n}}{2} \\
& \mu y_{n}=\left[\frac{E^{\prime / 2}+E^{-1 / 2}}{2}\right] y_{n} \\
& \mu=\frac{E^{1 / 2}+E^{-1 / 2}}{2}
\end{aligned}
$$

The above equation is the relation between Average operator and shifting operator
Pascal's Triangle.

$$
\begin{array}{ccccc}
& 1 & 1 \\
1 & 3 & 3 & 3 & 10 \\
1 & 5 & 10 & 10
\end{array}
$$

pate
290718
Necutons forward interpolation formulae
Consider $y=f(x)$ be the given function.
x creates the values, $x_{0}, x_{1}, x_{2} \ldots x_{n}$ and the common difference between ' x ' is ' h '.
The corresponding ' y 'values are $y_{0}, y_{1}, y_{2}, \ldots y_{n}$ rupectively then

$$
\begin{aligned}
y_{n} & =f\left(x_{0}+n h\right) \\
& =E^{n} f\left(x_{0}\right)
\end{aligned}
$$

$$
\begin{gathered}
\quad(1+\Delta)^{n} y_{0}^{\prime}=y_{n} \\
\because(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\frac{n(n-1)(n-2)}{3!} x^{3}+\cdots \\
y_{n}=(1+\Delta)^{n}=\left[1+n \Delta+\frac{n(n-1)}{2!} \Delta^{2}+\frac{n(n-1)(n-2)}{3!} \Delta^{3}+\cdots\right] y_{0} \\
y_{n}=y_{0}+n \Delta y_{0}+\frac{n(n-1)}{2!} \Delta^{2} y_{0}+\frac{n(n+1)(n-2)}{3!} \Delta^{3} \pm y_{0}+\cdots
\end{gathered}
$$

Newton's Backward Interpolation Formulae At arbitrary value $x=x_{n}$ the corresponding yvolues is y_{n} then $y_{n}=f\left(x_{n}\right)$

$$
\begin{aligned}
& \Rightarrow y_{n}=f\left(x_{n+n h}\right) \\
&=E^{n} f(x n) \\
&=\left(F^{-1}\right)^{-n} f\left(x_{n}\right) \\
&=(1-\nabla)^{-n} y_{n} \\
& \because(1-x)^{-n}=\left[1+n x+\frac{n(n+1)}{2!} x^{2}+\frac{n(n+1)(n+2)}{3!} x^{3}+\frac{n(n+1)(n+2)(n t}{4!}\right. \\
& y_{n}=(1-\nabla)^{-n}=\left[1+n \nabla+\frac{n(n+1)}{2!} \nabla^{2}+\frac{n(n+1)(n+2)}{3!} \nabla^{3}+\frac{n(n+1)(n+2)(n+3) \nabla^{4}}{4!}\right. \\
& y_{n}=y_{n}+n \nabla y_{n}+\frac{n(n+1)}{2!} \nabla^{2} y_{n}+\frac{n(n+1)(n+2)}{3!} \nabla^{3} y_{n}+\frac{n(n+1)(n+2)(n+3)}{4!} \nabla^{4} y_{n} \\
& D
\end{aligned}
$$

Problems

1. find $\Delta f(x), f(x)=x^{3}+x^{2}+x+10, h=1$

Solus Since we know that

$$
\begin{aligned}
\Delta f(x)= & f(x+h)-f(x) \\
= & f(x+1)-f(x) \\
= & (x+1)^{3}-(x+1)^{2}+(x+1)+10-\left[x^{3}-x^{2}+x+10\right] \\
= & x^{3}+1^{3}+3 x^{2} 1+3 x-\left[x^{2}+1+2 x\right]+x+1 \\
& +10-x^{3}+x^{2}-x-10 \\
= & x^{3}+1+3 x^{2}+3 x-x^{2}-1-2 x+x x+10 \\
= & -x^{3}+x^{2}-x-x 0 \\
= & 3 x^{2}+3 x+1-2 x
\end{aligned}
$$

$$
\therefore \Delta f(x)=3 x^{2}+x+1
$$

2. find $\Delta^{2} f(x)$, given $f(x)=e^{2 x}, h=1$
sole) Since $\Delta f(x)=f(x+h)-f(x)$
we know that
$3 x^{4}+7$

$$
\begin{align*}
\Delta f(x) & =f(x+1)-f(x) \\
& =e^{2(x+1)} \\
& =e^{2 x+2}-e^{2 x} \\
& =e^{2 x}\left(e^{2}-e^{2 x}\right. \\
\Delta f(x) & =e^{2 x}\left(e^{2}-1\right) \\
\Delta e^{2 x} & =e^{2 x}\left(e^{2}-1\right) \rightarrow(1) \tag{1}\\
\Delta^{2} f(x) & =\Delta[\Delta f(x)] \\
& =\Delta\left[e^{2 x}\left(e^{2}-1\right)\right] \\
& =\left(e^{2}-1\right)\left[\Delta e^{2 x}\right] \\
& =\left(e^{2}-1\right)\left[e^{2 x}\left(e^{2}-1\right)\right] \text { From }
\end{align*}
$$

$-] y_{n}$
3. If $f(x)=\frac{10}{x 1}$ find $\Delta f(x)$ and $h=1$

Solus)

$$
\begin{aligned}
\Delta f(x) & =f(x+h)-f(x) \\
& =f(x+1)-f(x) \\
& =\frac{10}{(x+1)!}-\frac{10}{x!} \Rightarrow \frac{10}{(x+1)!x!}-\frac{10}{x!} \\
& =\frac{10-10(x+1)}{(x+1)!x!} \\
& =\frac{10[1-x-1]}{(x+1)!} \\
& =\frac{-10 x}{(x+1)!}
\end{aligned}
$$

7 Show that $\delta^{2} E=\Delta^{2}$
Solus)

$$
\begin{aligned}
& \delta^{2} F=\Delta^{2} \\
& \delta=E^{\prime / 2}-E^{-1 / 2} \\
& \Delta=E-1 \\
& \text { L.H.S }=\left(E^{\prime / 2}-E^{-1 / 2}\right)^{2} E \\
&=\left(\left(E^{1 / 2}\right)^{2}+\left(E^{-1 / 2}\right)^{2}-2 E^{1 / 2} E^{-1 / 2}\right) E \\
&=\left[E+E^{-1}-2\right] E \\
&=E^{2}+E^{-1} \cdot E-2 E \\
&=\left[E^{2}+1-2 E \cdot 1\right] \\
&=[E-1]^{2} \\
&=\Delta{ }^{2}=\text { R.H.S } \\
& \text { L.H.S }=\text { R.H.S }
\end{aligned}
$$

Hence proved.
8. Show that $\mu \delta=\frac{E-E^{-1}}{2}$

Solus

$$
\begin{aligned}
\mu= & \frac{E^{1 / 2}+E^{-1 / 2}}{2} \quad \delta=E^{1 / 2}-E^{-1 / 2} \\
L \cdot H \cdot S & =\left[\frac{E^{1 / 2}+E^{-1 / 2}}{2}\right]\left[E^{1 / 2}-E^{-1 / 2}\right] \\
& =\frac{\left(E^{1 / 2}\right)^{2}-\left(E^{-1 / 2}\right)^{2}}{2} \\
& =\frac{E^{\prime}-E^{-1}}{2} \\
& =\text { R.H.S }
\end{aligned}
$$

9 Show that $\Delta=\nabla(1-\nabla)^{-1}$.
Solus)

$$
\begin{aligned}
\Delta & =\nabla(1-\nabla)^{-1} \\
1-\nabla & =E^{-1} \\
\text { A.H.S } & =\nabla\left(E^{-1}\right)^{-1} \\
& =\nabla E^{\prime} \quad \nabla=1-E^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(1-E^{-1}\right) E \\
& =E-E^{-1} \cdot E \\
& =E-1 \\
& =\triangle \\
& =\text { R.H.S }
\end{aligned}
$$

10. Write Forward difference table for

$$
\begin{gathered}
\text { unite Forward difference } \\
x: 10 \\
20 \\
y: 10 \\
y: 0 \\
\hline
\end{gathered}
$$

sole) Forward Disference Table
11. Construct the difference table for the given data

$$
\begin{aligned}
& \text { instruct the difference table tor } \\
& x: \\
& x
\end{aligned}
$$

$$
\begin{array}{cccc}
x: & 0 & 2 & 4.6 \\
f(x) & \\
\text { inference table } & 1.5 & 2.2 & 3.1
\end{array}
$$

Solus) Difference table st. $x \quad 1^{\text {st }} \quad 2^{\text {nd }} 3^{\text {rd }} \quad 4^{\text {th }}$

$$
\left.\left.\left.\left.\left.\begin{array}{ll}
0 & 1.0 \\
1 & 1.5 \\
2 & 2.2 \\
3 & 3.1
\end{array}\right] \begin{array}{ll}
1.5-1.0 & 0.7-0.5 \\
=0.5 \\
2.2-1.5 \\
=0.7 \\
3.1-2.2 \\
=0.9 \\
4 & 4.6
\end{array}\right] \begin{array}{l}
0.2 \\
0.3-1 \\
0.9-0.7 \\
=1.5
\end{array}\right]=\begin{array}{l}
0.2-0.2 \\
1.5-0.9 \\
=0.6
\end{array}\right]=0.0 \begin{array}{l}
0.6-0.2
\end{array}\right] \begin{aligned}
& 0.4-0.0 \\
& =0.4
\end{aligned}
$$

In the above Question Δ is given so that From the difference table $\Delta^{2} f\left(t^{2}\right)=0.6$ Forward starts with y_{0}
Note in back word starts $y_{0}, y_{1} i, y_{2}, y_{3}$

$$
\begin{aligned}
& x \quad y \quad \Delta \quad \Delta^{2} \quad \Delta^{3} \\
& \left.\left.\begin{array}{ll}
10 & 1.1 \\
20 & 2.0
\end{array}\right\}=\begin{array}{ll}
2.0-1.1 & 2.9
\end{array}\right\}=2.4-0.9
\end{aligned}
$$

$$
\begin{aligned}
& 40 \quad 7.9 \quad J=3.5 \quad J=1.1
\end{aligned}
$$

From the difference table $\nabla^{2} f(2)=0.2$.
12. find the missing value of the following data.

$$
\begin{array}{ccccc}
x: 1 & 2 & 3 & 4 & 5 \\
f(x): 7 & - & 13 & 21 & 37
\end{array}
$$

du) Difference table
$[(13-y)(y-7)$ from the Difference table

$$
\begin{array}{lc}
13 y-y^{2}+7 y-91 & 38-4 y=0 \\
136 y-y^{2}-91 & 38=4 y \\
y^{2}-6 y+913 & y=9.5
\end{array}
$$

$$
\begin{aligned}
& \text { 4) } 38(7,5 \\
& \frac{36}{20}
\end{aligned}
$$

13 prove that $u_{4}=u_{3}+\Delta u_{2}+\Delta^{2} u_{t}+\Delta^{3} u_{1}$
Solve

$$
\begin{aligned}
R \cdot H \cdot S & =u_{3}+\Delta u_{2}+\Delta^{2} u_{1}+\Delta^{3} u_{1} \\
& =u_{3}+\Delta u_{2}+\Delta^{2} u_{1}+\left(\Delta^{2} u_{2}-\Delta^{2} u_{1}\right) \\
& =u_{3}+\Delta u_{2}+\Delta^{2} / u_{1}+\Delta^{2} u_{2}-\Delta^{2} / u_{1} \\
& =u_{3}+\Delta u_{2}+\Delta^{2} u_{2} \\
& =u_{3}+\Delta u_{2}+\left(\Delta u_{3}-\Delta u_{2}\right) \\
& =u_{3}+\Delta u_{3} \\
& =u_{3}+u_{u}-u_{3} \\
& =u_{4}=\text { L.H.S }
\end{aligned}
$$

14. Evaluate $u_{0}+4 \Delta u_{0}+6 \Delta^{2} u_{-1}+10 \Delta^{3} u_{-1}$
solus)

$$
\begin{aligned}
{[} & =\mu_{0}+4 \Delta u_{0}+6 \Delta^{2} u_{-}+10 \Delta^{3} u_{-1} \\
& =\mu_{0}+4\left(u_{1}-u_{0}\right)+6\left(\Delta u_{-0}-\Delta u_{-1}\right)+10\left(\Delta^{2} u_{2}-\Delta u_{-1}\right) \\
& =\mu_{0}+4 u_{1}-u u_{0}+6 \Delta u_{0}-6 \Delta u_{-1}+10 \Delta^{2} u_{0}-10 \Delta u_{-1}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\mu_{0}+6 \Delta u_{0}+10 \Delta^{2} u_{0}+4 u_{1}-6 \Delta u_{-1}-10 \Delta u_{-1} \\
& \left.=u_{0}+6 \Delta u_{0}+10 \Delta_{40}^{2}+4 u_{1}-10 \Delta u_{-1}^{2}-6 \Delta u_{-1}\right] \\
& =u_{0}+u 4 u_{0}+6 \Delta^{2} u_{-1}+10 \Delta^{3} u_{-1} \\
& =u_{0}+4 \Delta u_{0}+6 \Delta^{2} u_{-1}+10\left[\Delta^{2} u_{0}-\Delta^{2} u_{-1}\right] \\
& =u_{0}+4 \Delta u_{0}+6 \Delta^{2} u_{1}+10 \Delta^{2} u_{0}-10 \Delta^{2} u_{-1} \\
& =u_{0}+4 \Delta u_{0}+10 \Delta^{2} u_{0}-u \Delta^{2} u_{-1} \\
& =u_{0}+4 \Delta u_{0}+10 \Delta^{2} u_{0}-u\left(\Delta u_{0}-\Delta u_{-1}\right) \\
& =u_{0}+u \Delta u_{0}+10 \Delta^{2} u_{0}-u \Delta u_{0}+u \Delta u_{-1} \\
& =\mu_{0}+10 \cdot \Delta^{2} u_{0}+u \Delta u_{-1} \\
& =\mu_{0}+10\left[\Delta u_{1}-4 u_{0}\right)+4\left(u_{0}-u-1\right) \\
& =\mu_{0}+10 \Delta u_{1}-10 \Delta u_{0}+u u_{0}-u u_{-1} \\
& =u_{0}+10\left[u_{2}-u_{1}\right]-10 \cdot\left[u_{1}-u_{0}\right]+4 u_{0}-4 u_{2-1} \\
& =10 u_{2}-20 u_{1}+15 u_{0}-4 u_{+1}
\end{aligned}
$$

15. Evaluate $\Delta\left(c^{a x} \log (b x)\right)$
solus)

$$
\begin{aligned}
\Delta f(x) & =f(x+h)-f(x) \\
& =e^{a(x+h)} \log b(x+h)-e^{a x} \log (b x)
\end{aligned}
$$

$16 u_{z}$ is a function of x for which $5^{\text {th }}$ ditherences ore constant and $u_{1}+u_{7}=-786 ; u_{2}+u_{6}=686: u_{3}+u_{5}=1088$
find U_{4}
solus) Since Given that $5^{\text {th }}$ differences are constants

$$
\begin{aligned}
-4902 & +16320=20 u_{4} \\
20 u_{4} & =11418 \\
\therefore u_{4} & =\frac{11418}{20} \\
u_{u} & =570.9
\end{aligned}
$$

Since we know that $\Delta=E-1$

$$
\therefore \Delta^{6} u_{1}=0 \text {. }
$$

$$
\begin{aligned}
& \therefore(E-1)^{6} u_{1}=0 \\
& {\left[1 \cdot E^{6}-6 c_{1} E^{5}+6 c_{2} E^{4}-6 c_{3} E^{2}+6 c_{4} E^{2}-6 c_{5} E+6 c_{6} 1\right] u_{1}=0}
\end{aligned}
$$

$$
\begin{aligned}
& E^{6} u_{1}-6 E^{5} u_{1}+15 E^{4} u_{1}-20 E^{s} u_{1}+15^{2} E^{2} u_{1}-6 E u_{1}+u_{1}=0 \\
& u_{7}-6 u_{6}+15 u_{5}-20 u_{4}+15 u_{3}-68 u_{2}+u_{1}=0 \\
& \left(u_{3}+u_{1}\right)-+6\left(46+4 u_{2}\right)+15\left(45+u_{3}\right)-20 u_{4}=0 \\
& \begin{aligned}
-786-6(686)+15(1088-204 u & =0 \\
-786-4116+16320-20 u_{4} & =0
\end{aligned} \\
& -786-4116+16320-20 u_{4}=0
\end{aligned}
$$

Note:

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\ldots \ldots+
$$

Since we know that $E f(x)=f(x+h)$ by Taylor's serin formula

$$
\begin{aligned}
& \text { Formula } \\
&=f(x)+h f^{\prime}(x)+\frac{h^{2}}{2!} f^{\prime \prime}(x)+\frac{h^{3}}{3!} f^{\prime \prime \prime}(x)+\frac{h^{4}}{4!} f^{\prime \prime \prime}(x) \\
&=f(x)+h \frac{d}{d x} f(x)+\frac{h^{2}}{2!} \frac{d^{2}}{d x^{2}} f(x)+\frac{h^{3}}{3!} \frac{d^{3}}{d x^{3}} f(x)^{3}+\frac{h^{4}}{4!} \frac{d^{4}}{d x^{4}} f(x)+ \\
&\left.=f(x)\left[1+h \frac{d}{d x}+\frac{h^{2}}{2!} \frac{d^{2}}{d x^{2}}+\frac{h^{3}}{3!} \frac{d^{3}}{d x^{3}}+\frac{h^{4}}{4!} \frac{d y}{d x^{4}}++\right]\right] \\
&=f(x) \\
&=f(x)\left[1+h D+\frac{h^{2}}{\left.2^{2} p^{2}+h^{2} D\right)^{23}} \frac{\left(h^{3}\right.}{2!}+\frac{h D)}{3!}+\frac{(h D)^{4}}{4!}+\cdots\right] \\
& \therefore f f(x)=f(x) \cdot e^{h D} \\
& \therefore E=e^{h D} \quad \text { (or) } E=1+\Delta \Rightarrow 1+\Delta=e^{h D} \\
& \frac{d}{d x}=0 \\
& \therefore=e^{h D}-1
\end{aligned}
$$

17. Show that $\Delta^{n}\left[\frac{1}{x}\right]=\frac{(-1)^{n} n!h^{n}}{x(x+h)(x+2 h) \cdots(x+n h)}$
solus

$$
\begin{gathered}
\Delta^{n}\left[\frac{1}{x}\right]=\frac{(-1)^{n} n!h^{n}}{x(x+h)(x+2 h) \cdots(x+n h)} \\
\therefore \Delta f(x)=f(x+h)-f(x) .
\end{gathered}
$$

Now $n=1$

$$
\begin{align*}
& \Delta\left[\frac{1}{x}\right]=\frac{1}{x+h}-\frac{1}{x} \\
&=\frac{x-(x+h)}{x(x+h)} \\
&=\frac{x-x-h}{x(x+h)} \\
&=\frac{(-1) h}{x(x+h)} \rightarrow(1) \tag{1}\\
& n=2 \\
& \Delta^{2}\left[\frac{1}{x}\right]=\Delta\left[\Delta\left[\frac{1}{x}\right]\right. \\
&=\Delta\left[\frac{(-1) h}{x(x+h)}\right] \\
&=\Delta(-1)\left[\Delta \frac{1}{x(x+h)}\right] \\
&=h(-1)\left[\frac{1}{(x+h)(x+h+h)}-\frac{1}{x(x+h)}\right]
\end{align*}
$$

$$
\begin{align*}
& =(-1) h\left[\frac{x-(x+2 h)}{x(x+h)(x+2 h)}\right] \\
& =(-1) h\left[\frac{x-x-2 h}{x(x+h)(x+2 h}\right] \\
& =\frac{(-1)^{2} 2 h^{2}}{x(x+h)(x+2 h)} \\
& =\frac{(-1)^{2} 2 \cdot h^{2}}{x(x+h)(x+2 h)} \\
& =\frac{(-1)^{2} 2!h^{2}}{x(x+h)(x+2 h)} \tag{2}
\end{align*}
$$

If $n=3$

$$
\begin{align*}
& \Delta^{3}\left[\frac{1}{x}\right]=\Delta\left[\Delta^{2}\left[\frac{1}{x}\right]\right] \\
& =\Delta\left[\frac{(-1)^{2} 2!h^{2}}{x(x+h)(x+2 h)}\right] \\
& =(-1)^{2} 2!h^{2}\left[\Delta\left(\frac{1}{x(x+h)(x+2 h)}\right)\right] \\
& =(-1)^{2} 2!h^{2}\left[\frac{1}{(x+h)(x+h+h)(x+h+2 h)}-\frac{1}{x(x+h)(x+2 h)}\right] \\
& =(-1)^{2} 2!h^{2}\left[\frac{1}{(x+h)(x+2 h)(x+3 h)}-\frac{1}{x(x+h)(x+2 h)}\right] \\
& =(-1)^{2} 2!h^{2}\left[\frac{x-(x+3 h)}{x(x+h)(x+2 h)(x+3 h)}\right] \\
& =(-1)^{2} 2!h^{2}\left[\frac{x-\not x-3 h}{x(x+h)(x+2 h)(x+3 h)}\right] \\
& =\frac{(-1)^{2} 2!h^{2}(-1) 3 h}{x(x+h)(x+2 h)(x+3 h)} \\
& =\frac{(-1)^{3} 1 \times 2 \times 3 h^{3}}{x(x+h)(2+2 h)(x+3 h)} \\
& \therefore \Delta^{3}\left[\frac{1}{x}\right]=\frac{(-1)^{3} 3!h^{3}}{x(x+h)(x+2 h)(x+3 h)} \tag{3}
\end{align*}
$$

Hence from (1), (2) $\&(3)$

$$
\Delta^{n}\left[\frac{1}{x}\right]=\frac{(-1)^{n} n!h^{n}}{x(3+h)(x+2 h) \ldots(x+n h)}
$$

40) ${ }_{18}$ lis Given, $u_{0}+u_{8}=1.9243, u_{1}+u_{7}=1.9590, u_{2}+u_{6}=1.9823$
$518118 u_{3}+u_{5}=1.9956$ then find u_{4}.
18: since
solus
19. Find the missing term in the following
ind the missing term
$y: \int_{y_{0}}^{6} 10 y_{y_{2}} \sum_{y_{3}}^{17} \bar{y}_{y_{3}}$ we know that
solus Consider $\Delta^{4} y_{0}=0 \rightarrow 0-1$ (1) s (2)

$$
\begin{aligned}
& \Delta=E-1 \mathrm{Sub} \\
& (E-1)^{4} y_{0}=0 \quad \text { and }(E-1)^{4} y_{1}=0 \\
& \Rightarrow\left[1 . E^{4}-u c_{1} E^{3}+u c_{2} E^{2}+u c_{3} E+u c_{y_{0}}\right]=0 \xi \\
& {\left[r \cdot E^{4}-u c_{1} E^{3}+u c_{2} E^{2}+4 c_{3} E+u c_{u} u\right] y_{1}=0} \\
& \left.\Leftrightarrow\left[u_{s_{1}}-4 a_{3}+\frac{x^{2} \times 3}{1 \times x} u_{2}+\frac{4 \times 3 \times 2}{1 \times 2 \times 3} u_{1}+4\right] y_{0}=0 \xi\right] \\
& \Rightarrow E^{4} y_{0}-4 E^{3} y_{0}+\frac{4 \times 3}{1 \times 2} y_{0} t^{2}-\frac{u \times 3 \times 2}{1 \times 2 \times 3}+y_{0}+1 . y_{0}=0 \xi \\
& E^{4} y_{Q}-u E^{3} y_{1}+\frac{u \times 3}{1 \times 2} y_{1} E^{2}-\frac{u \times 3 \times 2}{1 \times 2 \times 3} E y_{1}+1 \cdot y_{1}=0
\end{aligned}
$$

$$
\begin{aligned}
& (E-1)^{8} u_{0}=0 \\
& u_{0}\left[1 \cdot E^{8}-8 c_{1} E^{7}+8 c_{2} E^{6}+8 c_{3} E^{5}+8 c_{4} E^{4}+8 c_{5} E^{3}+8 c_{2} E E^{2}+8 C_{7} E+8 C_{0}\right. \text {, } \\
& u_{0} E^{8}-8 E^{7} u_{0}+\frac{8 \times 7}{1 \times 2} E^{6} u_{0}+\frac{8 \times 7 \times \beta^{3}}{1 \times 8 \times 3} E^{5} u_{0}+\frac{8 \times 7 \times 8_{0}^{8} \times 9}{1 \times 2 \times 8 \times 4} E_{1}^{4} u_{0} \\
& +\frac{8^{x} \times 7 \times 6 \times 5 \times 18}{1 \times 2 \times 3 \times 4 \times 5} E^{3} u_{0}+\frac{8^{4} \times 7 \times 6 \times 5 \times 4 \times 3}{1 \times 2 \times 8 \times 4 \times 5 \times 16} E^{2} u_{0}+\frac{4 \times 7 \times 6 \times 8 \times 4 \times 3 \times 2}{1 \times 2 \times 3 \times 1 \times 8 \times 8 \times 6 \times 7 x^{2}}=4 \\
& +840=0 \\
& u_{8}-8 u_{7}+28 u_{6}-\$ 56 u_{5}+70 u_{4}-56 u_{3}+28 u_{2}-8 u_{1}+u_{0}=0 \\
& { }^{70 u_{4}}\left(u_{0}+u_{8}\right)-s\left(u_{1}+u_{7}\right)+8\left(u_{2}+u_{6}\right)-56\left(u_{3}+v_{5}\right)=0 \\
& 70 u_{4}+1.9243-8(1.9590)+28(1.9823)-56 \cdot(1.9956)=0 \\
& 70 u_{4}+1.92 u_{3}-15.672+55.504 u-11.7536=0.1 .9243 \\
& 169.9969=70 u_{4} \\
& u_{u}=\frac{69.9969}{70} \\
& u_{u}=0.999955714 \\
& \therefore u_{u}=1
\end{aligned}
$$

$$
\begin{align*}
& y_{4}-u y_{3}+6 y_{2}-u y_{1}+y_{0}=0 \tag{3}\\
& y_{5}+44+6 y_{3}-4 y_{2}+y_{1}=0 \tag{1}
\end{align*}
$$

$$
\begin{align*}
& \text { from } \\
& {\left[17-4 y_{3}+6(10)-4(6)+\right] } \\
\Rightarrow & y_{4}-4(17)+6 y_{2}-4(10)+6=0 \\
\Rightarrow & y_{4}+6 y_{2}-68-40+6=0 \\
\Rightarrow & y_{4}+6 y_{2}-102=0 \tag{5}\\
\Rightarrow & y_{4}+6 y_{2}=102 \rightarrow 5
\end{align*}
$$

$$
\begin{align*}
& \text { from (4) } \\
& \left.\begin{array}{l}
31-4 y_{4}+6(17)-4 y_{2}+10=0 \\
31+102+10=y 4+4 y_{2} \\
143=4 y_{4}+4 y_{2} \rightarrow \text { (6) } \\
6 y_{2}+y_{4}-102=0 \\
4 y_{2}+4 y_{4}-143=0
\end{array}\right\} B y 2312 \\
& \therefore y_{2}=13.25, y_{4}=22.5
\end{align*}
$$

from (1)
find the missing value of the following table

$$
\begin{array}{cccccc}
x & 1 & 2 & 3 & 4 & 5 \\
y & 7 & x & 13 & 21 & 37 \\
y_{0} & y_{1} & y_{2} & y_{3} & y_{4}
\end{array}
$$

Sole) $\Delta^{4} y_{0}=0$ since we know that

$$
\begin{aligned}
\therefore E & =1+4 \\
\Delta & =E-1
\end{aligned}
$$

$$
(E-1)^{4} y_{0}=0
$$

$$
\left[1 \cdot E^{4}+u c_{1} E^{3}+u c_{2} E^{2} \rightarrow u c_{3} E+u c_{4}\right] y_{0}=0
$$

$$
E^{4} y_{0} \mp 4 \varepsilon^{3} y_{0}+\frac{u^{2} \times 3}{1 x x} E^{2} y_{0}-\frac{4,8 x z}{1 x_{2} x_{3}} E y_{0}+4 y_{0}=0
$$

$$
\left.\left.\left[\begin{array}{r}
y_{4}-4 y_{3}+6 y_{2}-4 y_{1}+4 y_{0}=0 \\
37-4(21)+6(13)-4 x+4(7)=0 \\
37-84+68-4 x+28=0 \\
65+68-84=4 x \\
3-81=4 x \\
-78=4 x
\end{array}\right] \begin{array}{r}
7=4 x \\
x=\frac{7}{4}
\end{array}\right]\right\}
$$

$$
\begin{gathered}
37-u x_{21}+6 \times 13-u y_{1}+7=0 \\
-84-u y_{1}+37+7+78=0 \\
-u y_{1}+38=0 \\
u y_{1}=38 \\
y_{1}=9.5
\end{gathered}
$$

21. Estimate the missing term in the following table.

$$
\begin{aligned}
& \text { Estimate the missing term } \\
& x \quad 1 \quad 2
\end{aligned}
$$

$$
\begin{array}{lllllll}
x & 1 & 2 & 3 & 4 & 32 & 64 \\
y & 2 & 4 & 8 & 128 & y_{4} & y_{5}
\end{array}
$$

sold) Since we know that and find $\log 102$.
solus) Here given $101 \quad 102 \quad 103104$

$$
\begin{array}{ccccc}
x & 100 & 101 & 102 & 103 \\
y & 2 & 2 \cdot 0043 & 2.0128 & 2.0170 \\
= & \log x & y_{0} & y_{i} & y_{4} \\
\text { now that }
\end{array}
$$

since we know that

$$
\begin{aligned}
\Delta^{4} y_{0} & =0 \\
\Delta & =F-1
\end{aligned}
$$

From $E=1+\Delta$

$$
\begin{aligned}
& \Delta^{6} y_{0}=0 \\
& E=1+\Delta \\
& \Delta=E-1 \\
& \begin{array}{l}
480 \\
120 \\
128
\end{array} \\
& (E-1)^{6} y_{0}=0 \\
& {\left[E^{6} 1-\overline{+} 6 c_{1} E^{5}+6 c_{2} E^{4}+6 c_{3} E^{3}+6 c_{4} E^{2-6}+6 c_{5} E+6 c_{6}\right] y_{0}=0} \\
& \frac{112}{730} \\
& E^{6} y_{0}+6 E^{15} y_{0}+15 E^{4} y_{0}+\frac{x^{6} \cdot 5 \cdot 4}{1 \cdot x \cdot 3} E^{3} y_{0}+\frac{6^{3} \cdot 5 \cdot \mu \cdot 3}{1 \cdot 2 \cdot 3 \cdot 4} E^{2} y_{0} \bar{\pi} \frac{6 \cdot 8 \cdot 4 \cdot 3 \cdot 1}{1 \cdot 2 \cdot x \cdot x \cdot 5} E y_{0}+y_{0} \\
& y_{6} \approx 6 y_{5}+15 y_{4}-20 y_{3}+15 y_{2}-6 y_{1}+y_{0}=0 \\
& 128-6(64)+15(32)-20\left(y_{3}\right)+15(8)-6(4)+2=0 \quad \frac{\frac{4}{120} 4^{82} \frac{15}{160}}{\frac{12^{2}}{48}} \\
& 128-284+480-20 y_{3}+120-2 u+2=0 \\
& {\left[730-284-2420 y_{3}=0 \quad 322=200 y_{3}\right.} \\
& 730-308=20 y_{3} \\
& y_{3}=\frac{322}{20} \\
& 422=20 y_{3} \\
& y_{3}=16.1 \\
& y_{3}=21.17 \\
& \text { 22. Given } \log ^{100}=2 ; \log ^{101}=2.0043 ; \log 103=2.0128 ; \log ^{104}=2.0170
\end{aligned}
$$

$$
\begin{aligned}
& (E-1)^{4} y_{0}=0 \\
& {\left[1 . E^{4} \mp u c_{1} E^{3}+u c_{2}^{2} E-u c_{3} E+u c_{4}\right] y_{0}=0} \\
& E^{4} y_{0}-u E^{3} y_{0}+\frac{x^{2} \times 3}{1 x^{2}} E^{2} y_{0}-\frac{u \times 3 \times 2}{1 \times 2 \times 3} E_{2} y_{0}+y_{0}=0 \\
& y_{4}-u y_{3}+6 y_{2} 20 u y_{1}+y_{0}=0 \\
& 2.0170-4(2.0128)+6 y_{2}-u(2.0043)+2=0 \\
& 2.0170-8.0512+6 y_{2}-8.0172+2=0 \\
& 4.0170-16.0684+6 y_{2}=0 \\
& 6 y_{2}=\frac{12.0514}{6} \\
& \therefore y_{2}=2.0086 \\
& \therefore \log _{102}=2.0086
\end{aligned}
$$

23 . find the missing values of the following.

$$
\begin{array}{llllll}
\text { find the missing values of the } & 25 & 30 & 35 \\
x & 10 & 15 & 20 & 25 & 77 \\
y & 43 & & 29 & 32 & y_{4} \\
y & y_{0} & y_{1} & y_{2} & y_{3} & y_{5}
\end{array}
$$

Sola) Since we know that

$$
\begin{aligned}
& \Delta^{4} y_{0}=0 ; \quad E=1+\Delta \Rightarrow \Delta=E-1 \\
& (f-f)^{4} y_{0}=0 \\
& {\left[1 \cdot E^{4}-u c_{1} E^{3}+u c_{2} E^{2}+u c_{3} E+u c_{4}\right] y_{0}=0} \\
& E^{4} y_{0}-u E^{3} y_{0}+6 E^{2} y_{0}-H E y_{0}+y_{0}=0 \\
& y_{4}-u y_{3}+6 y_{2}-4 y_{1}+y_{0}=0 \\
& y_{4}-4(32)+6(29)-4 y_{1}+43=0 \\
& y_{4}-128+174-4 y_{1}+43=0 \\
& y_{4}-4 y_{1}=128-174-43 \\
& y_{4}-u y_{1}=128-2 r q \\
& y_{u}-u y_{1}=-89 \rightarrow \text { (1) (or) } u y_{1}-y_{u}=89 \\
& \Delta^{4} y_{1}=0 \quad\left(-y_{4}+u y_{1}\right)=+89 \\
& (E-1)^{4} y_{1}=0 \\
& {\left[1 \cdot E^{4}-4 c_{1} E^{3}+4 c_{2} E^{2}+4 c_{3} E+4 c_{4}\right] y_{1}=0} \\
& E^{4} y_{1}-4 E^{3} y_{1}+6 E^{2} y_{1}-4 E y_{1}+y_{1}=0 \\
& y^{5}-4 y_{4}+6 y_{3}-4 y_{2}+y_{1}=0 \text {. }
\end{aligned}
$$

$$
\begin{gathered}
77-4 y_{u}+6(32)-4(29)+y_{1}=0 \\
y_{1}-4 y_{u}+77+192-116=0 \\
y_{1}-4 y_{u}=116-192-77 \\
y_{1}-u y_{u}=116-269 \\
y_{1}-4 y_{u}=-153 \rightarrow(2) \\
y_{1} \\
-1 \\
-89 \\
-4 \\
y_{1} \\
-153-356 \\
y_{1} \\
\frac{y_{4}}{-509}=\frac{y_{4}}{-701}=\frac{153}{-15}=\frac{1}{-16+1} \\
y_{1}=\frac{-509}{-15} ; y_{u}=\frac{-701}{-15} \\
y_{1}=33.9334 ; y_{4}=46
\end{gathered}
$$

$$
\begin{array}{r}
192 \\
\frac{77}{269} \\
\frac{116}{153}
\end{array}
$$

$$
{ }^{2} 153
$$

$$
\begin{aligned}
& \frac{4}{612} 89 \\
& \frac{4}{356} \\
& \frac{4}{39} \\
& \frac{11}{602} \\
& \frac{81}{7}
\end{aligned}
$$

$$
\begin{array}{lll}
356 & 89 & \frac{1}{356} \\
\frac{153}{509} & \frac{612}{1502} & \frac{11}{71}
\end{array}
$$

Bate!
Estimate the production for 1964 and 1966 from the following
24

$$
6|\delta| 18
$$ data. years $(x) 1961$

production (y) 200
solus Given that

$$
\begin{array}{llllll}
1962 & 1963 & 1964 & 1965 & 1966 & 1967 \\
& 350 & - & 430
\end{array}
$$

$$
\begin{aligned}
& n(y) 200 \quad \text { that x years } y_{x}=1961,1962,1963,1964,1965,1960,170 \\
& y^{5} y_{0}=0 \rightarrow \text { (1) } \quad E=1+\Delta \quad y=200,220260-350-
\end{aligned}
$$

$$
\begin{aligned}
& \cdot(E-1)^{5} y_{0}=0 \\
& {\left[1 \cdot E^{5}-5 c_{1} E^{4}+5 c_{2} E^{3}+5 c_{3} E^{2}+5 c_{4} E+5 c_{5}\right] y_{0}=0}
\end{aligned}
$$

$$
y_{5}-5 y_{4}+\frac{5 x y^{2}}{1 \times x} y_{3}-\frac{5 x y^{2} \times 3}{1 \times 2 \times 3} y_{2}+\frac{5 \times 4 \times 3 \times 2}{1 \cdot 2 \cdot 3 \cdot 4} y_{1}+y_{0}=0
$$

$$
y_{5}-5 y_{4}+10 y_{3}-10 y_{2}+5 y_{1}+y_{0}=0
$$

$$
y_{5}-5(350)+10 y_{3}-10(260)+5(220)+200=0
$$

$$
y_{5}-1750+10 y_{3}-2600+1100+200=0
$$

$$
\begin{gather*}
y_{5}+10 y_{3}-120050=0 \tag{2}\\
3450
\end{gather*}
$$

$$
\begin{align*}
& \Delta^{5} y_{1}=0 \rightarrow(3) \\
& y_{6} \cdot(E-1)^{5} y_{1}=0 \\
& {\left[1 \cdot E^{5}+5 c_{1} E^{4}+5 c_{2} E^{3}-5 c_{3} E^{2}+5 c_{2} E+5 c_{5}\right] y_{1}=0} \\
& E^{5} y_{1}+5 c_{1} E^{4}+t_{1}+5 c_{2} E^{3} y_{1}+5 c_{3} E^{2} y_{1}+5 c_{4} E y_{1}+5 c_{5} y_{1}=0 \\
& y_{6}-5 y_{5}+10 y_{4}-10 y_{3}+5 y_{2}-y_{1}=0 \\
& 430-5 y_{5}+10(350)-10 y_{3}+5(260)-220=0 \\
& 430-5 y_{5}+3500-10 y_{3}+1300-220=0 \text {. } \\
& 5010-5 y_{5}-10 y_{3}=0 \\
& 5 y_{5}+10 y_{3}=5010 \tag{4}\\
& \text { from (2) and (4) } \\
& y_{5}+10 y_{3}=3450 \\
& 5 y_{5}+10 y_{3}=5010 \\
& -4 y_{5}=-1560 \\
& y_{5}=\frac{390}{-4560}=390 \\
& y_{5} \neq 10 y_{3}=3450 \\
& \text { 490 } 390 y_{3}=3450 \\
& 10 y_{3}=3450-390 \quad y_{3}=16.2571 \quad y_{5}=6.33 \\
& 10 y_{3}=3060 \\
& y_{3}=306
\end{align*}
$$

31. Pit a polynomial of degree 3 and hence determine $y(3.5)$ for the following data.
x : 3456
$y: \begin{array}{llll} & 6 & 24 & 60 \\ 120\end{array}$
Difference table.

$$
\begin{aligned}
& \text { Difference table. } \\
& \left.\left.\begin{array}{ccc}
x & y & 1^{\text {st }} \\
3 & 6 \\
4 & 24 \\
5 & 60
\end{array}\right] \begin{array}{c}
18 \\
6 \\
6
\end{array}\right]
\end{aligned} 2^{\text {nd }} \quad 3^{\text {rd }}
$$

By Newton's Forward Interpolation Formula

$$
\begin{aligned}
y(3.5) & =(3.5)^{3}-3(3.5)^{2}+2(3.5) \\
& =42.875-3(12.25)+7 \\
& =42.875-36.75+7 \\
\therefore y(3.5) & =13.125
\end{aligned}
$$

$$
42.875
$$

$$
\frac{36.75}{6.125}
$$

32. find the cubic polynomial which takes the following values.

$$
\begin{aligned}
& \text { values. } \\
& y(0)=1, \quad y(1)=0, y(2)=1, y(3)=10
\end{aligned}
$$

$$
\begin{aligned}
& y_{n}=y_{0}+n \Delta y_{0}+\frac{n(n-1)}{2!} \Delta y_{0}+\frac{n(n-1)(n-2)}{3!} \Delta^{3} y_{0} \\
& \frac{18}{\frac{3}{34}}{ }^{2} \\
& \eta=\frac{x-x_{0}}{h}=\frac{x-3}{l}=x-3 \\
& x=x \quad x_{0}=3 \quad h=1 \\
& y\left(3^{x}, 5\right)=6+(x-3) \cdot 18+\frac{(x-3)(x-3-1)}{21} 18+\frac{(x-3)(x-3-1)(x-3-2)}{31} 6 \\
& =6+18 x-54+\frac{(x-3)(x-4)}{2} \times x^{9}+\frac{(x-3) \cdot(x-4)(x-5)}{6} \times 6 \\
& =6+18 x-54+\left(x^{2}-3 x-4 x+12\right) 9+\left[x^{2}-3 x-4 x+12\right] \\
& =6+18 x-544+9 x^{2}-27 x-36 x+188+x^{3}-3 x^{2}-4 x^{2}+12 x \\
& =x^{3}-3 x^{2}+2 x \\
& \text { put } x \quad 3.5
\end{aligned}
$$

Hence obtain $y(u)$

$$
y(0)=1, \quad y(1)=0 \quad y(2)=1 . \quad y(3)=10
$$

Difference table

$$
\left.\left.\left.\begin{array}{cccc}
x & y & \text { st } & 2^{\text {nd }} \\
0 & 1 \\
1 & 0 \\
2 & 1 \\
3 & 10
\end{array}\right] \begin{array}{c}
\\
0
\end{array}\right] \begin{array}{c}
2 \\
2
\end{array}\right] 6
$$

Newtons forward interpolation formulae

$$
\begin{aligned}
y_{n}= & y_{0}+n \Delta y_{0}+\frac{n(n-1) \Delta y_{0}}{2!}+\frac{n(n-1)(n-2)}{3!} \Delta 3 y_{0} \\
\eta & =\frac{x-x_{0}}{h}=\frac{x-0}{1}=x \\
x & =x \quad x_{0}=0, \quad h=1 \\
y_{n} & =1+x(-1)+\frac{x(x-1) 2}{2}+\frac{x(x-1)(x-2)}{6} \\
& =1-x+x^{2}-x+\left(x^{2}-x\right)(x-2) \\
& =1-x+x^{2}-x+x^{3}-x^{2}-2 x^{2}+2 x \\
& =x^{3}-2 x^{2}+1
\end{aligned}
$$

put $x=4$

$$
\begin{aligned}
y(u) & =u^{3}-2(u)^{2}+1 \\
& =64-32+1
\end{aligned}
$$

$\therefore y(u)=33 \quad[0,3]$ interval ' u ' is out of intravel so it is called extrapolation.
33 find the polynomial interpolating the data
$x: 0 \quad 1 \quad 2$
y : 052 Difference Table
$\begin{array}{lll}x & y & 1^{\text {st }} \\ 0 & 0 & 2^{\text {nd }} \text { loimanyly }\end{array}$
$\left.\left.\begin{array}{ll}0 & 0 \\ 1 & 5 \\ 2 & 2\end{array}\right] \begin{array}{c}5 \\ -3\end{array}\right]-8$

Newton's forward Interpolation formula

$$
\begin{aligned}
y_{n} & =y_{n}+n \Delta y_{0}+\frac{n(n-1)}{21} \Delta^{2} y_{0}+\frac{n(n-1)(n-2)}{31} \Delta^{3} y_{0} \\
n & =\frac{x-x_{0}}{h}=\frac{x-0}{1}=x \\
x & =x \quad x_{0}=0 \quad h=1 \\
{\left[y_{n}\right.} & =x+x(0)+\frac{x(x-1)}{2} 5+\frac{x(x-1)(x-2)}{63}(-8) \\
& =x+0+\frac{\left(x^{2}-x\right) 5}{2}+\frac{\left(x^{2}-x\right)(x-2)}{3}(t u) \\
& =x+\frac{5 x^{2}-5 x}{2}+\frac{\left(x^{3}-x^{2}-2 x^{2}+2 x\right)}{3}(-u) \\
& \left.=x+5 x^{2}-5 x\right] \\
y_{n} & =0+x-5+\frac{x(x-1)}{2} x(-8)^{4} \\
& =5 x-\left(x^{2}-x\right) 4 \\
& =5 x-4 x^{2}+4 x \\
\therefore y_{n} & =-4 x^{2}+9 x
\end{aligned}
$$

34. Find the polynomial of $\operatorname{deg}(u)$ which takes the following Values

$$
\begin{array}{llllll}
x: & 2 & 4 & 6 & 8 & 10 \\
y: & 0 & 0 & 9 & 0 & 0
\end{array}
$$

35. Use Newtons Forward gisference Formula to obtain the interpolating polynomial $f(x)$ satisfying the following data $x: 1 \quad 2 \quad 3 \quad 4$ and find and $x=5$ $y: 26$
Form the Difference table
Sole) Form the Difference table 35. $x \quad y$ st $2^{\text {nd }} 3^{\text {rd }}$

$$
2^{18} \frac{26}{8}
$$

$$
\left.\left.\begin{array}{ccc}
1 & 26 &] \\
2 & 18 & -8 \\
3 & 4 & - \\
4 & 1 & -14 \\
-3
\end{array}\right]-6 \begin{array}{c}
-6 \\
11
\end{array}\right]
$$

(16) ${ }_{\text {mi s }}^{17}$ take

From Newton's Interpolation forward formulae

$$
\begin{aligned}
y_{n} & =y_{0}+n \Delta y_{0}+\frac{n(n-1)}{2!} \Delta^{2} y_{0}+\frac{n(n-1)(n-2)}{3!} \Delta y_{0} \\
& n=\frac{x-x_{0}}{h}=\frac{x-1}{1}=x-1 \\
x & =x ; x_{0}=1 ; h=1 \\
y_{n} & =26+(x-1)(-8)+\frac{(x-1)(x-1-1)}{2}(-1)+\frac{(x-1)(x-1-1)(x-2-1)}{43} \\
& =26-8 x+8-(3 x-3)(x-1-1)+\frac{(x-1)(x-2)(x-3) 8}{3} \\
& =26-8 x+8-(3 x-3)(x-2)+\frac{\left[x^{2}-x-2 x+2\right](x-3)}{3} \times 8 \\
& =26-8 x+8-\left[3 x^{2}-3 x-6 x+6\right]+\left[x^{3}-x^{2}-2 x^{2}+2 x-3 x^{2}\right. \\
& =26-8 x+8-3 x^{2}+9 x-6+\left[x^{3}-6 x^{2}+11 x-6\right] \times \frac{8}{3} \\
& =26-8 x+8-3 x^{2}+9 x-6+\left[x^{3}-6 x^{2}+11 x-6\right] \times \frac{8}{3} \\
& =78-24 x+24-9 x^{2}+27 x-18+\left(x^{3}-6 x^{2}+11 x-6\right) 8 \\
& =84-24 x-9 x^{2}+27 x+8 x^{3}-48 x^{2}+88 x-48 \\
y_{n} & =8 x^{3}-57 x^{2}+91 x+36
\end{aligned}
$$

put $x=5$

$$
\begin{aligned}
y(5) & =8(5)^{3}-57(5)^{2}+91(5)+36 \\
& =8(125)-57(25)+455+36 \\
& =1000-1425+455+36 \\
\therefore y(5) & =66
\end{aligned}
$$

34. Forming the difference table

$$
\begin{aligned}
& x \text { y } 1^{\text {st }} 2^{\text {nd }} 3^{\text {rd }} u^{\text {th }} \\
& \left.\left.\left.\begin{array}{cc}
2 & 0 \\
4 & 0 \\
6 & 1 \\
8 & 0 \\
10 & 0
\end{array}\right] \begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right\} \begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]-3 \begin{array}{c}
-3 \\
-6
\end{array}
\end{aligned}
$$

From Newtons Forward interpolation formula

$$
\begin{aligned}
& \begin{array}{c}
y_{n}=y_{n}+n \Delta y_{0}+\frac{n(n-1)}{2!} \Delta^{2} y_{0}+\frac{n(n-1)(n-2)}{3!} \Delta^{3} y_{0}+n(n-1)(n-2) \\
\eta=x-x_{0}=2-2
\end{array} \\
& \eta=\frac{x-x_{0}}{h}=\frac{2-2}{2} \\
& y_{n}=0+\frac{x-2}{2} 0+\frac{\left(\frac{x-2}{2}\right) \cdot\left(\frac{x-2}{2}-1\right)}{2}+\frac{\left(\frac{\left(\frac{x-2}{2}\right) \cdot\left(\frac{x-2}{2}-1\right) \cdot\left(\frac{x-2}{1^{2}}-2\right.}{62}(-3)\right.}{62} \\
& +\frac{\left(\frac{x-2}{2}\right) \cdot\left(\frac{x-2}{2}-1\right)\left(\frac{x-2}{2}-2\right)\left(\frac{x-2}{2}-3\right)}{2 u_{4}} \nLeftarrow \\
& y_{n}=\frac{\left(\frac{x-2}{2}\right)\left(\frac{x-4}{2}\right)}{2}=\frac{\left(\frac{x-2}{2}\right) \cdot\left(\frac{x-4}{2}\right)\left(\frac{x-6}{2}\right)}{2}+\frac{\left(\frac{x-2}{2}\right) \cdot\left(\frac{x-4}{2}\right) \cdot\left(\frac{x-6}{2}\right)}{4}= \\
& y_{n}=\frac{(x-2)(x-4)}{8}-\frac{(x-2)(x-4)(x-6)}{16}+\frac{(x-2)(x-4)(x-6)(x-}{64} \\
& \begin{array}{c}
y_{n}=\frac{x^{2}-2 x-4 x+8}{8}-\frac{\left[x^{2}-2 x-4 x+8\right][x-6]}{16}+\left[x^{2}-2 x-4 x+8\right] \\
{\left[x^{2}-6 x-8 x+48\right]} \\
64
\end{array} \\
& y_{n}=\frac{x^{2}-6 x+8}{8}-\frac{\left[x^{3}-2 x^{2}-4 x^{2}+8 x-6 x^{2}+12 x+24 x-48\right]}{6} \\
& +x^{4}-6 x^{3}-8 x^{3}+48 x^{2}-2 x^{3}+12 x+16 x^{2}-96 x-4 x^{3} \\
& \begin{array}{l}
\frac{+x-6 x-8 x+48 x^{2}+32 x^{2}+192 x+8 x^{2}-48 x-64 x+404}{64} \frac{\frac{88}{401}}{4} \\
\frac{x^{2}-6 x+8}{8}-\frac{\left[x^{3}-12 x^{2}+44 x-48\right]}{16}+\frac{x^{4}-20 x^{3}+44 x+40 y}{64} \frac{192}{156} \\
+\frac{48}{108}
\end{array} \\
& y_{n}=\frac{x^{3}-6 x+8}{8}-\frac{x^{3}+12 x^{2}-44 x+48}{16}+\frac{x^{4}-20 x^{3}+44 x+404}{6 y} \frac{4 y}{4^{4}} \\
& y_{n}=8 x^{3}-48 x+64-4 x^{3}+48 x^{2}-176 x+192+x x^{4} 20 x^{3}+44 x+4044 \\
& 6 y \\
& y_{n}=x^{4}-16 x^{3}+48 x^{2}-180 x+660
\end{aligned}
$$

Date：find the no．of students from the following data rolflis who secured masks not more than 45

Marks $\quad 30-40 \quad 40-50 \quad 50-60 \quad 60-70 \quad 70-80$
no of
students

$$
35+48+70+40+22
$$

Difference table
Marks
（x）（below）of students（y） $2^{\text {nd }} 3^{\text {rd }} 4^{\text {th }}$ （x）（below）student sly）

$$
\left.\left.\left.\left.\left.\begin{array}{cc}
40 & 35 \\
50 & 83 \\
60 & 153 \\
70 & 193 \\
80 & 215
\end{array}\right\} \begin{array}{c}
48 \\
70 \\
40 \\
22
\end{array}\right] \begin{array}{c}
22 \\
-30 \\
-18
\end{array}\right]-52\right\} \begin{array}{c}
12
\end{array}\right]
$$

From Newton＇s forward interpolation formula．

$$
\begin{aligned}
& \text { From Newtons } \begin{array}{l}
y_{n}=y_{0}+n \Delta y_{0}+\frac{n(n-1)}{2!} \Delta y_{0}^{2}+\frac{n(n-1)(n-2)}{3!} \Delta^{3} y_{0}+\frac{n(n-1)(n-2)(n}{4!-4 y} \\
g_{n} \quad \eta=\frac{x-x_{0}}{h} ; x=y_{15(k)} x_{0}=40(i) \quad h=10 \\
n=\frac{45-40}{10}=\frac{5}{10}=\frac{1}{2}=0.5
\end{array}
\end{aligned}
$$

$$
\text { Tun) } 35+(0.5)(48)+\frac{(0.5)(0.5-1)}{21} \sin _{22}^{8}+\frac{(0.5)(0.5-1)(0.5-2)}{6} \times\left(\frac{1}{3}\right.
$$

$$
+\frac{(0.5)(0.5-2)(0.5-3)}{24} \times \frac{0_{1}^{(0.5-1}}{\frac{1}{32}}
$$

$$
y\left(\text { p }_{5}\right)=35+24-2.75+\frac{(0.5)(-0.5)(-1.5)(-26)}{3}
$$

$$
\frac{+(0.5)(-0.5) \cdot(-1.5) \cdot(-2.5)}{3} \times 8
$$

$$
y(45)=35+24-2.75-3.25-2.5
$$

$\therefore y_{\text {（0）}} 50.5$
\therefore No．of students who secured below 45 marks $=50.5$ $=51$（approximate）
ii) No. of students in between Hand $45=$ No. of students secured 45 marks - No. of students secured 40 marks above 45

$$
\begin{array}{l|l}
=51-35 & \begin{array}{l}
=215-51 \\
=164
\end{array} \\
=16
\end{array}
$$

37 find the no. of men getting the wages between RS. 10 and RS. 15 from the following table $\begin{array}{lllll}\text { wages } & 0-10 & 10-20 & 20-30 & 30-40\end{array}$ Frequency $9+30 \varepsilon+35+42$
lu) Disterence Table
\(\left.\left.$$
\begin{array}{cc}x \text { (below) } & y \\
10 & 9 \\
20 & 39 \\
30 & 74 \\
40 & 11.6\end{array}
$$\right\} \begin{array}{l}1^{st}

30

35

42\end{array}\right]\)| 5 |
| :---: |
| $2^{\text {nd }}$ | $3^{r d}$

From Newtons forward interpolation formulae

$$
\begin{aligned}
y_{n}= & y_{0}+n \Delta y_{0}+\frac{n(n-1)}{2!} \Delta^{2} y_{0}+\frac{n(n-1)(n-2)}{3!} \Delta^{3} y_{0}+0 \\
n & =\frac{x-x_{0}}{h} \quad x=15 ; x_{0}=10 \quad h=10 \\
y(15) & =9+39(0.5)+\frac{(0.5)(0.5-1)}{2}=\frac{5}{10}=\frac{1}{2}=0.5 \\
& =9+15.0+\frac{(0.5)(0.5-1)(0.5)}{2} .5+\frac{(0.5)(-0.5)(-1.5)}{3} \\
& =9+15-10.625+0.125 \\
y(15) & =23.5
\end{aligned}
$$

\therefore NO. of men got the wages below RS. $15=23.5$

$$
=2 u \text { Capproximately }
$$

The wages in between RS. 10 and RS. 15 NO. Of MEA who got below RS: 15 - below RS 10

$$
=27-9=15
$$

yo o
$=9+42+210+105=366$
40 using Newtons Bacleward interpolation formula, find $e^{-1.9}$ from the following table

$$
\begin{array}{cccccc}
e^{-1.9} & \text { from } & \text { the } & 1.5 & 1.75 & 2 \\
x: & 1 & 1.25 & 18) \\
y_{e}-x & 0.3679 & 0.2865 & 0.2231 & 0.1738 & 0.1353
\end{array}
$$

Sole) Difference table

From Newton's Backward Interpolation formula

$$
\begin{aligned}
& y_{n}=y_{n}+n \nabla y_{n}+\frac{n(n+1)}{2!} \nabla^{2} y_{n}+\frac{n(n+1)(n+2)}{3!} \nabla^{3} y_{n}+n(n+1)(n+2)(n+1) \\
& {\left[y_{n}=0.1353+3 \quad n=\frac{x-y_{0}}{h} \quad h=0.25 ; x=1.9 ; x_{0}=2\right.} \\
& n=\frac{1.9-2}{0.25}=\frac{-0.1}{0.25}=-0.4 \\
& y_{m q}=0.1353+(-0.4)(-0.0385+1)+\frac{(-0 . u)(-0 . u+1)(0.0108)}{1.2} \\
& \frac{f(-0.4)(-0.4+1)(-0.4+2)}{1.2 .3}(-0.0033)+(-0.4)(-0.4+1)(-0.4+2) \\
& (-0 . u+3) \times 0.0006 \\
& {\left[y_{n}=0.1353+0.0154+6.264 \times 10^{-3}-8.0448 \times 10^{1.2 .3 .4}\right.} \\
& -3.6756 \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& Y_{\underline{\eta}_{9}}=0.1353+0.0154-0.0 .0 \begin{array}{l}
1296 \\
3_{9}
\end{array}+0.0002112+0.00002496 \\
& Y_{\underline{I}_{9}}=0.13797614=0.138
\end{aligned}
$$

41. Find the $\cos (25)^{\circ}$ and $\cos \left(75^{\circ}\right)$ from the following data. $\begin{array}{lllllllllll}H 0 & \dot{\alpha} & 10 & 20 & 30 & 40 & 50 & 60 & 70 & 80\end{array}$ $\begin{array}{lllllllllllll}=105 x & & 0.9848 & 0.9397 & 0.866 & 0.766 & 0.7428 & 0.5 & 0.3420 & 0.1727\end{array}$
42. Using Newton's forynullae find the value of y and $x=36$ from nus the following data.

$$
\begin{array}{lllll}
\text { the following data } & & 37 \\
x: & 21 & 25 & 29 & 33
\end{array}
$$

Solus x y $2^{\text {st }} 2^{\text {nd }} 3^{\text {rd }} 4^{\text {th }} 5^{\text {th }} 6^{\text {i }}$

Newton's forward Interpolation formula

$$
\begin{aligned}
& y_{n}=y_{0}+n \Delta y_{0}+\frac{n(n-1)}{2!} \Delta^{2} y_{0}+\frac{n(n-1)(n-2)}{3!} \Delta^{3} y_{0}+n(n-1)(n-2) \\
& \checkmark \nabla^{4} y_{n}+n(n+1)(n-2)(n-3)(n-4) \Delta^{5} y_{0}+n(n-1)(n-2)(n-3)(n-4) \\
& +\frac{5!}{+n(n-1)(n-2)(n-3)(n-4)(n-5)(n-6) \Delta^{7} y_{0} y^{6!}-8} \\
& n=\frac{x-x_{0}}{h} ; x=25 ; x_{0}=10 ; h=10 \quad n=\frac{25-10}{10}=\frac{15^{3}}{10}=1.5 \\
& y_{n}=0.9848+1.5(-0.0451)+\frac{1.5(1.5-1)}{2} \cdot(-0.0286)+(1.5)(1.5-1) \\
& \frac{(1.5-2)}{6} 0.002 \\
& \begin{array}{r}
+(1.5)(1.5-1)(1.5-2)(1.5-3) 0.0008 \\
2 u
\end{array}+(1.5)(1.5-1)(1.5-2)(1.5-3)(1.5-4 \\
& \frac{\text { tum. }(-0.0003)}{(1.5-5)(120} \\
& +(1.5)(1.5-1)(1.5-2)(1.5-3)(1.5-4)(1.5-5)\binom{120}{0.0006} \\
& +(1.5)(1.5-1)(1.5-2)(1.5-3)(1.5-4)(1.5-5)(1.5-6) / 5040 \\
& \text { (-0.0016) }
\end{aligned}
$$

$$
\begin{aligned}
y_{n} & =0.9848-0.06765-\frac{0.02145}{2}-0.0625 \times 0.0023 \\
& +0.023 .4375 \times 0.0008+7.8125 \times 10^{-4} \times 0.0003+ \\
& +6.510416667 \times 10^{-5} \times 0.0006+4.650297619 \times 10^{-6} \times 0.0016 \\
y_{n} & =0.9848-0.06765-0.010725-0.00014375+0.00007875 \\
& +0.000000234375+0.0000000390625+0.00000000744047619
\end{aligned}
$$

$$
y \cos (85)=0.9063002809
$$

Newtons Backward Interpolation formulae.

$$
\begin{aligned}
& y_{n}=y_{n}+n \nabla y_{n}+\frac{n(n+1)}{2!} \nabla^{2} y_{n}+\frac{n(n+1)(n+2)}{3!} \nabla^{3} y_{n}+\frac{n(n+1)(n+2)(n+3)}{4!} \nabla y, \\
& +\frac{n(n+1)(n+2)(n+3)(n+u)}{51} \nabla \int_{y_{n}}+\frac{n(n+1)(n+2)(n+3)(n+4)(n+5)}{61} \nabla^{6} y_{n} \\
& +n(n+1)(n+2)(n+3)(n+u)(n+5)(n+6) \quad \nabla^{7} 9 n \\
& n=\frac{x-x_{0}}{h} ; x=75, x_{0}=80 ; h=10 \quad n=\frac{75-80}{10}=\frac{-5}{10}=0.5 \\
& \begin{aligned}
{\left[{ }_{[y}{ }_{n}=\right.} & -0.5 \\
& 0.9848+(-0.5)(-0.0451)+\frac{(-0.5)(-0.5+1)(-0.0286)}{2!} \\
& +(-0.5)(-0.5+1)(-0.5+2)
\end{aligned} \\
& +\frac{(-0.5)(-0.5+1)(-0.5+2)}{6} \times 0.0023+\frac{21}{24} \\
& +(-0.5)(-0.5+1)(-0.5+2)(-0.5+3)(-0.5+4)(-0.0003) \\
& +\frac{(-0.5)(-0.5+1)(-0.5+2)(-0.5+3)(-0.5+u)(-0.5+5)}{720} \times 0.0006 \\
& +(-0.5)(-0.5+1)(-0.5+2)(-0.5+3)(-0.5+4)(-0.5+5)(-0.5+6)(-0.00 \\
& \text { the jackets } \\
& 5040 \\
& \cos (75)=0.9848+0.02255+0.003575+0.00014375-0.00003125 . \\
& +0.000008203125-0.0000123046875+0.00002578125 \\
& \cos (75)=1.01105918] \\
& =0.1727+(-0.5)(-0.1693)+\frac{(-0.5)(-0.5+1)}{2}(-0.0(13) \\
& \left.\begin{array}{c}
(0.5) \\
+30005
\end{array}\right) \\
& +(-0.5)(-0.5+1)(-0.5+2)(-0.5+3)(-0.5+u)(-0.0013) \\
& +\frac{(-0.5)(-0.5+1)(-0.5+2)(-0.5+3)(-0.5+w)(-0.5+5)}{61}(-0.001)
\end{aligned}
$$

So te Legranges Interpolation Formula
Consider $y=f(x)$ be the given function, x takes the values x_{0}, x_{1} $x_{2}, x_{3}, x_{4}, \cdots$ the corresponding y values are $y_{0}, y_{1}, y_{2}, y_{3}$, $y_{4}, \ldots \ldots$ respectively. Then.

$$
\begin{aligned}
y(x)= & \frac{\left(x-x_{0}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)\left(x-x_{4}\right)}{\left(x_{0}-x_{9}\right)\left(x_{0}-x_{2}\right)\left(x_{0}-x_{3}\right)\left(x_{0}-x_{4}\right)} y_{0}+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)\left(x-x_{4}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{1}-x_{4}\right)} \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{3}\right)\left(x-x_{4}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)\left(x_{2}-x_{4}\right)} y_{2}+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{4}\right)}{\left(x_{3}-x_{0}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)\left(x_{3}-x_{4}\right)} \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{u}-x_{0}\right)\left(x_{4}-x_{1}\right)\left(x_{u}-x_{2}\right)\left(x_{u}-x_{3}\right)} y_{4}
\end{aligned}
$$

Dote
${ }_{4} / 7 / 18$ using Legranges formula to find $f(6)$. from the following 1. table.

$$
\begin{array}{lllll}
\text { table. } & x_{20} & x_{1} & x_{2} & x_{3} \\
x & x_{1}
\end{array}
$$

$f(x) \quad 18 \quad 180 \quad 448 \quad 1210 \quad 2028$
By Legranges interpolation formula
solus)

$$
\begin{aligned}
& y(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)\left(x-x_{4}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)\left(x_{0}-x_{3}\right)\left(x_{0}-x_{4}\right)} y_{0}+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)\left(x_{1}\right)\left(x_{1}-x_{3}\right)}\left(y_{1}\right) \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x_{3}\right)\left(x-x_{4}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)\left(x_{2}-x_{4}\right)}+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{4}\right)}{\left(x_{3}-x_{0}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)\left(x_{3}-x_{4}\right)} \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right) y_{y}}{\left(x_{4}-x_{0}\right)\left(x_{4}-x_{1}\right)\left(x_{u}-x_{2}\right)\left(x_{4}-x_{3}\right)} \\
& y(6)=\frac{(6-5)(6-7)(6-10)(6-12)}{(2-5)(2-7)(2-10)(2-12)} \cdot \frac{(6-2)(6-7)(6-10)(6-12)}{(5-2)(5-7)(5-10)(5-12)^{x}} \\
& +\frac{(6-2)(6-5)(6-10)(6-12)}{(7-2)(7-5)(7-10)(7-12)} \text { sur }+\frac{(6-2)(6-5)(6-7)(6-12) x}{(10-2)(10-5)(10-7)(10-12)} \\
& +\frac{(6-2)(6-5)(6-7)(6-10)}{(12-2)(12-5)(12-7)(12-10)} \times 2028 \\
& y(6)=\frac{1(-1)(-4)(-6)}{(-3)(-5)(-8)(-10)} \times \frac{18}{\left(\frac{4(-1)(-4)(-6)}{3(-2)(-5)(-7)}\right.}
\end{aligned}
$$

2. Using the Legranges interpolation formulae find the

$$
\therefore y(6)=293.9999=294
$$ value of $y(10)$ from the following table

$\begin{array}{lllll}x: & 5^{x_{0}} & 6^{x_{1}} & \left.9^{x_{2}}\right) & 11\end{array}$
y : $12 y_{0} \quad{ }_{y} 3_{1} 1 y_{2} 16$

$$
\begin{aligned}
& \text { Sou) By legranges interpolation formulae } \\
& y(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)\left(x_{0}-x_{3}\right)} y_{0}+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)\left(x-x_{3}\right) y_{1}}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)\left(x_{1}+x_{3}\right)} \\
& \begin{array}{l}
+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x_{1}-x_{3}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)} y_{2}+\frac{\left(x-x_{0}\right)\left(x_{1}-x_{2}\right)\left(x-x_{2}\right)}{\left(x_{3}-x_{0}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)}
\end{array} \\
& y(10)=\frac{(10-6)(10-9)(10-11)}{(5-6)(5-9)(5-11)} 12+\frac{(10-5)(10-9)(10-11)}{(6-5)(6-9)(6-11)} 13 \\
& 1210 \\
& \text {-172028 }
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{mor} y(6)=\frac{9}{25}+\frac{60}{25}+\frac{6480}{15}+\frac{72}{150} \times u 48-121+\frac{16 \times 2028}{700} \\
& y(6)=-0.36+432+215-121+46.354 \\
& y(6)=572.719 \% \\
& y(6)=\frac{-9}{25}+\frac{576}{7}+\frac{7168}{25}-121+\frac{8112}{175} \\
& y(6)=-121+\frac{9+7168}{25}+\frac{576}{7}+\frac{8112}{175} \text {. } \\
& y(6)=-121+\frac{7159}{25}+\frac{576}{7}+\frac{8112}{125} \\
& y(6)=-121+286 \cdot 36+82.2857+46 \cdot 3542
\end{aligned}
$$

$$
\begin{aligned}
& y(10)=\frac{44}{3} \\
& \therefore y(10)=14.667
\end{aligned}
$$

3. find the cubic Legranges Interpolating polynomial from the following data.
$x: 0^{x_{0}} \cdot 1_{1}^{x_{1}} 2^{x_{2}} \quad \frac{x_{3}}{5}$
$f(x): \begin{array}{llll}2 & 3 & 12 & 147 \\ y_{0} & y_{1} & y_{2} & y_{3}\end{array}$
solus) The Legranges Interpolation formula

$$
\begin{aligned}
& f(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)\left(x_{0}-x_{3}\right)} y_{0}+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)} y_{1} \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{3}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)} y_{2}+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{3}-x_{0}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)} y_{3} \\
& =\frac{(x-1)(x-2)(x-5)}{(0-1)(0-2)(0-5)} 2+\frac{(x-0)(x-2)(x-5)}{(1-0)(1-2)(1-5)} 3 \\
& +\frac{(x-0)(x-2)(x-5)}{(2-0)(2-1)(2-5)} 12+\frac{(x-0)(x-1)(x-12)}{(5-0)(5-1)(5-2)} 147 \\
& =\frac{(x-1)(x-2)(x-5)}{(-1)(-2)(-5)} 2+\frac{x(x-2)(x-5)}{1(-1)(-4)} 3 \\
& +\frac{x(x-1)(x-5)}{2 \cdot 1 \cdot(-5)} x^{6^{2}} \frac{+x(x-1)(x-2)}{5(4)(3)} 147 \\
& =-\frac{(x-1)(x-2)(x-5)}{5}+\frac{x(x-2)(x-5)}{4} \times 3 \\
& +\frac{x(x-1)(x-5)}{} \times 2+\frac{x(x-1)(x-2)}{60} \times 1147 \\
& =\frac{-\left(x^{2}-x-2 x+2\right)(x-5)}{5}+\frac{\left(x^{2}-2 x\right)(x-5)}{4} \times 3 \\
& -\left(x^{2}-x\right)(x-5) x+\frac{\left(x^{2}-x\right)(x-2) x+47}{60} \\
& =\quad-\left[x^{3}-x^{2}-2 x^{2}+2 x-5 x^{2}+50 x+10 x-10\right] / 5 \\
& +\frac{\left[x^{3}-2 x^{2}-5 x^{2}+10 x\right] 3}{4}-\left[x^{3}-x^{2}-5 x^{2}+5 x\right] 2 \\
& +\frac{\left[x^{3}-x^{2}-2 x^{2}+2 x\right] \times 147}{60}
\end{aligned}
$$

4. Find the Legranges interpolating polynomial for the given

$$
\therefore f(x)=x^{3}+x^{2} x+2
$$ data.

$x: 1^{x 0} 2^{x} 3^{x_{2}} 4^{x_{3}}$
$f(x): l_{y_{r}} \quad 8 y_{1} \quad 2 z_{2} \quad 6 y^{y 3}$
Solus) The Legranges interpolation formulae.

$$
\begin{aligned}
& =-\left[x^{3}+4 x^{2}+10 x\right] \text {. } \\
& =-\frac{\left[x^{3}-8 x^{2}+17 x-10\right]}{5}+\frac{\left[x^{3}-7 x^{2}+10 x\right] 3}{4}-\left[x^{3}-6 x^{2}+5 x\right] \\
& +\frac{\left[x_{0}^{3}-3 x^{2}+2 x\right]+47}{60} \\
& =\frac{-x^{3}+8 x^{2}-17 x+10}{5}+\frac{3 x^{3}-21 x^{2}+30 x}{4}-2 x^{3}+12 x^{2}-10 x \\
& +x^{3}-3 x^{2}+x x+\frac{49 x^{3}-147 x^{2}+98 x}{20} \\
& \begin{aligned}
=-4 x^{3}+32 x^{2}-68 x+40+15 x^{3}-105 x^{2}+150 x-40 x^{3}+240 x^{2}-200 x \\
+49 x^{3}-147 x^{2}+98
\end{aligned} \\
& 20 \\
& =\frac{20 x^{3}+20 x^{2}-20 x+40}{20} \\
& =\frac{20\left(x^{3}+x^{2}-x+20\right)}{20}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\left(x^{2}-5 x+6\right)(x-4)}{6}+\left(x^{2}-4 x+3\right)(x-3) \text { \& } 2 \\
& \frac{-\left(x^{2}-3 x+2\right)(x-4)}{2} 27+\frac{\left[x^{2}-3 x+2\right][x-3)}{32} \\
& {\left[=\frac{-\left[x^{3}-5 x^{2}+6 x-4 x^{2}+20 x-24\right]}{6}+\left[x^{3}-4 x^{2}+3 x-3 x^{2}+12 x\right.\right.} \\
& +9] 4 \\
& -\frac{\left[x^{3}-3 x^{2}+2 x-4 x^{2}+12 x-8\right] 27}{2}+\frac{\left[x^{3}-3 x^{2}+2 x-3 x^{2}+9 x-6\right]}{3} \\
& \text { er }=\quad-\quad x^{3}+5 x^{2}-6 x+4 x^{2}-20 x+24+4 x^{3}-16 x^{2}+12 x-12 x^{2}+48 x \\
& +36 \\
& -27 x^{3}+81 x^{2}+54 x+108 x^{2}-324 x+216+32 x^{3}-96 x^{2}+64 x \\
& \text { wrong } 2 \quad \frac{-96 x^{2}+288 x-192}{3} \\
& =-x^{3}+5 x^{2}-6 x+4 x^{2}-20 x+24+24 x^{3}-96 x^{2}+72 x-72 x^{2}+ \\
& 288 x+216-81 x^{3}+443 x^{2}-162 x+324 x^{2}-972 x+648 \\
& \text { n9v9) } \frac{+64 x^{3}-192 x^{2}+128 x-192 x^{2}+576 x-384}{\gamma} \\
& \left.=6 x^{3}\right] \\
& =-\left[x^{3}-7 x^{2}+12 x-2 x^{2}+14 x-24\right]+24\left[x^{3}-7 x^{2}+12 x-x^{2}+7 x-12\right] \\
& \frac{-27 \times 3\left(x^{3}-6 x^{2}+8 x-x^{2}+6 x-8\right)+64\left(x^{3}-5 x^{2}+6 x-x^{2}+5 x-6\right)}{6} \\
& =-\left[x^{3} 9 x^{2}+26 x-24\right]+24\left[x^{3}-8 x^{2}+19 x-12\right]-27 \cdot\left(x^{3}-7 x^{2}\right. \\
& \text { Hux-8]+6.4 }\left[x^{3}-6 x^{2}+11 x-6\right] \\
& =+\left[x^{3}+9 x^{2}-26^{6} x+24\right]+24 x^{3}-192 x^{2}+456 x-288-81 x^{3} \\
& \frac{+567 x^{2}-1134 x+648+64 x^{3}-384 x^{2}+704 x-384}{6} \\
& =\frac{1}{6}\left[6 x^{3}+0+0+0\right]=x^{3}
\end{aligned}
$$

5. Using Legranges Interpolation formula to fit a polynomial to the following data x_{0}

$x:$| x_{0} | x_{i} | x_{1} | x_{3} |
| :---: | :---: | :---: | :---: |
| -1 | 0 | 2 | 3 |

$\begin{array}{cccc}u_{x}: & y_{0} & u_{1} & u_{2} \\ -8 & 3 & 1 & 12\end{array}$
and also find the value u_{1}
solv. By begranges interpolation formulae

$$
\begin{aligned}
& u_{x}=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)\left(x_{0}-x_{3}\right)} y_{0}+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right.} u_{1} \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{3}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{9}\right)\left(x_{2}-x_{3}\right)} u_{2}+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{3}-x_{0}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)} u_{3} \\
& u_{x}=\frac{(x-0)(x-2)(x-3)}{(-1-0)(-1-2)(-1-3)}(-8)+\frac{(x+1)(x-2)(x-3)}{(0+1)(0-2)(0-3)} 3 \\
& +\frac{(x+1)(x-0)(x-3)}{(2+1)(2-0)(2-3)},+\frac{(x+1)(x-0)(x-2)}{(3+1)(3-0)(3-2)}+2 \\
& {\left[\left[u_{x}=\frac{(x-0)(x-2)(x-3)}{-1 \times-3 x+4}\left(+8^{2}\right)+\frac{(x+1)(x-2)(x-3)}{-24 \times 5 \times 1} \times 2>\right.\right.} \\
& +\frac{(x+1) x(x-3)}{3 \cdot 2(-1)}+\frac{(x+1)(x)(x-2)}{4 \cdot 3 \cdot 1} \times 2^{3} \\
& u_{x}=\frac{2 x\left[x^{2}-2 x-3 x+6\right]}{3}+\frac{x\left[x^{2}+x-2 x-2\right]}{+4} \text {. } \\
& \text { worg }+\frac{\left[x^{2}+x+3 x-3\right] x}{-6}+\frac{\left[x^{2}+x-2 x-2\right] x}{1} \\
& u_{x}=\frac{2 x^{3}-4 x^{2}-6 x^{2}+12 x}{3}+\frac{x^{3}+x^{2}-2 x^{2}-2 x}{4} \\
& -\frac{x^{3}+x^{2}-3 x^{2}-3 x}{6}+\frac{x^{3}+x^{2}-2 x^{2}-2 x}{} \\
& u_{x}=\frac{\left.2 x^{3}-10 x^{2}+12 x+x^{3}-5 x^{2}\right]}{3} \\
& u_{x}=2 x^{3} \cdot \frac{x^{3}\left(x^{2}-5 x+6\right)}{-1 \times 3 x-14}-8^{2}+\frac{(x+1)\left(x^{2}-5 x+6\right)}{1 x-2 x-73} \text {. } \times 3 \\
& +\frac{(x+1)\left(x^{2}-3 x\right)}{3 \times 2 x-1}+\frac{(x+1)\left(x^{2}-2 x\right)}{y(x)} \times x^{8} \\
& 4_{x}=\frac{2 x^{3}-10 x^{2}+12 x}{3}+\frac{x^{3}-5 x^{2}+6 x+x^{2}-5 x+6}{2}-\frac{\left(x^{3}-3 x^{2}+x^{2}-3 x\right.}{6} \\
& +\left(x^{3}-2 x^{2}+x^{2}-2 x\right)\left(x^{3}-4 x^{2}+x+6\right)-\left(x^{3}-3 x^{2}+x^{2}-3 x\right) \\
& \begin{array}{l}
u_{x}=2\left(2 x^{3}-10 x^{2}+12 x\right)+3 \\
+6\left(x^{3}-1 x^{2}-2 x\right)
\end{array} \\
& u x=\frac{1}{6}\left\{\begin{array}{l}
\left.4 x^{3}-20 x^{2}+24 x+3 x^{3}+2 x^{2}+3 x+18-x^{3}+2 x^{2}+3 x+6 x^{3}-6 x^{2}-12 x\right\}
\end{array}\right. \\
& =\frac{12 x^{3}-36 x^{2}+18 x+18}{6} \geq 2 x^{3}-6 x^{2}+3 x+3 \text { if } x=1 \\
& u_{1}=2(1)^{3}-6(1)^{2}+3(1)+3=211 \text {. }
\end{aligned}
$$

ante Control Differences
Gauss-Forword Interpolating Formulae

$$
\begin{aligned}
y_{n}= & y_{0}+n \Delta y_{0}+\frac{n(n-1)}{2!} \Delta^{2} y_{-1}+\frac{(n+1) n(n-1)}{3!} \Delta^{3} y_{-1}+\frac{(n+1) n(n-1)(n-2)}{4!} \\
& \frac{(n+2)(n+1) n(n-1)(n-2)}{5!} \Delta^{5} y_{-2}+\cdots
\end{aligned}
$$

Gouss-Backword Interpolating Formulae

$$
\begin{aligned}
y_{n}= & y_{0}+n \Delta y_{-1}+\frac{(n+1) n}{2!} \cdot \Delta^{2} y_{-1}+\frac{(n+1) n(n-1)}{3!} \Delta^{3} y_{-2}+\frac{(n+2)(n+1) n(n-1)}{4!} \\
& \Delta y_{-2}+\frac{(n+2)(n+1) n(n-1)(n-2)}{5!} \Delta^{5} y_{-3}+2
\end{aligned}
$$

I find $f(2.5)$ using the following table.

$$
\begin{array}{llll}
x: & 2 & 3 & 4
\end{array}
$$

$f(x)=1 \quad 8 \quad 27 \quad 64$ Difference table
Solve x fo $1^{\text {st }} 2^{\text {nd }} 3^{\text {rd }}$
$1 x_{1}, y^{y-1} \neq y-1$

$$
\begin{aligned}
& 2 x_{0} \frac{8 y_{-0}}{} 7^{y_{-1}} 12 y_{-1} \quad 6 y-1 \\
& 3 x_{1} 27 y_{1} \text { is } y_{0} \\
& 4 x_{2} 64 y_{2} \quad 37 y_{1}
\end{aligned}
$$

Gauss forward interpolating formula

$$
\begin{aligned}
y_{n} & =y_{0}+n \Delta y_{0}+\frac{n(n-1)}{21} \Delta^{2} y_{-1}+\frac{(n+1) n(n-1)}{31} \Delta^{3} y_{-1} \\
n & \left.=\frac{x-x_{0}}{h} ; x_{0}=2.8\right) x=2.5 ; n=1 \\
& n=\frac{2.5-2}{1}=0.5\left(\frac{20}{}\right. \\
y_{n} & =8+(0.5)(19)+\frac{(0.5)(0.5-1)}{21} 12+\frac{(0.5+1)(0.5)(0.5-1)}{31} 6 \\
& =8+9.8+\frac{(0.5)(-0.5)}{x} \times 2^{6}+\frac{(1.5)(0.5)(-0.5)}{23} \times x^{2} \\
& =8+9.5-88.95-0.375
\end{aligned}
$$

$$
y(2.5)=15.625
$$

2. From the following table find y when $x=38$

$$
x: 30 \quad 35 \quad 40 \quad 45 \quad 50
$$

$\begin{array}{lllllll} & x: & 30 & 35 & 40 & 45 & 50 \\)_{1} & y & 15.9 & 14.9 & 14 . t & 13.3 & 12.5 \\ \text { Difference table }\end{array}$ $x \quad y$ es $1^{\text {st }} 2^{\text {nd }} 3^{r d} 4^{\text {th }}$

$$
\begin{aligned}
& 30 x_{-1} 15.9 y-1-1 y_{-1} \\
& \frac{3520}{350} \frac{14.9 y_{0}}{40} \frac{0.2 y_{-1}}{14 \cdot 1 y_{1}}-\frac{0.8 y_{0}}{} \quad 0 y_{0} \quad-0.2 y-1 \quad 0.2 y=1 \\
& 45 \\
& 13.3 y_{2}-0.8 y_{1}
\end{aligned}
$$

By applying Gauss forword interpolating formula

$$
\begin{array}{lll}
45 & 13.3 y_{2}-0.8 y 1 \\
50 \quad 12.5 y_{3}-0.8 y_{2} & y_{1}
\end{array}
$$

$$
\begin{aligned}
& \text { By applying Gauss forword } \\
& y_{n}= y_{0}+n \Delta y_{0}+\frac{n(n-1)}{2!} \Delta^{2} y_{-1}+\frac{(n+1) n(n-1)}{3!} \Delta^{3} y-1 \\
& \eta= \frac{x-x_{0}}{h} ; x=38 \quad x_{0}=35 ; h=5 \\
& n= \frac{38-35}{5}=\frac{3}{5}=0.6 \\
& y_{n}= 14.9+(0.6)(-0.8)+\frac{(0.6)(0.6-1)(n-2)}{2!}(0.2)+\frac{(0.6+1)(0.6)(0.6-1)}{31}(-0.2) \\
& {\left[+\frac{(0.6+1)(0.6)(0.6-1)(0.6-2)}{41}(0.2)\right] }
\end{aligned}
$$

$$
y_{(338)}=14.9-0.48-0.024+0.0128+[0.00]
$$ from the following data

Why gauss
$f(x) \quad 19.3 \quad 15.1 \quad 15 . \quad 14.514$ x y $1^{\text {st }} 2^{\text {nd }} 3^{r^{2 d}}=4^{\text {th }}$ forward $8 y^{1 / 5}$ Gums
$\left.\begin{array}{ll}1 x_{-2} & 15.3 y-2-0.2 y-2 \\ 2 x-1 & 15.1 y-1\end{array}-0.9 y-2\right)(0.5 y-2-2.5$
$\begin{array}{llll}2 x-1 & 15.1 y-1 \\ 3 x_{0} & 15 y_{0}-0.1 y-1 & -0.6 y-1 & -0.4 y-1 \\ 0.9 & y-2\end{array}$
$\left.\begin{array}{lllll}3 x_{0} & 15 y_{0} & -0.5 y_{0} & -0.4 y y y & +0.4 y-1 \\ 4 & 14.5\end{array}+0.50-0.0 y_{0} \quad 1\right)$
$\begin{array}{llll}4 & 14.5 & -0.5 & -0.0 y_{0} \\ 5 & 14 & -0.5 & {[2-x\rangle}\end{array}$
$s\left[a 1+r_{2}-x_{\varepsilon} s s_{x}+x-x p+j\right.$

By applying Gauss forward interpolating formulae

$$
\begin{aligned}
& y_{n}=y_{0}+n \Delta y_{0}+\frac{n(n-1)}{2!} \Delta^{2} y_{-1}+\frac{(n+1) n(n-1)}{3!} \Delta^{3} y_{-1}+\frac{+(n+1) n(n-1)(n-2)}{4!} \Delta^{4} y, \\
& n=\frac{x-x_{0}}{h} \quad x=3.3 ; x_{0}=3 ; \quad h=1 ; n=\frac{3.3-3}{1}=0.3 \\
& y(3.3)=15+0.3(-0.5)+\frac{(0.3)(0.3-1)}{2!}(-0.4)+\frac{(0.541)(0.5)(0.5-1)}{31}(0.4) \\
& +\frac{(0.3+1)(0.8)(0.3-1)(0.8-2)}{15-0.15+0.042(-0.9} \\
& y(3.3)=15-0.15+0.042 E 0.0286+0.02016)-0.0182+0.0580125 \\
& \text { प्y }(3.3) \text { E } 14.88 .652614 .9318125 \text { 7. }
\end{aligned}
$$

$$
\begin{aligned}
& 3.3) E 14.88 .65614 .93181257 . \\
& =15-0.15+0.042-0.182+0.01740375=14.89120375 \\
& =\text { the data in the follow }
\end{aligned}
$$

4: find the polynomial which quit the data in the following table using Goats forward formula

$$
\begin{array}{cccccc}
\text { table using r routs forward } & 3 & 5 & 7 & 9 & 11 \\
y & 6 & 24 & 58 & 108 & 174 \\
& 24 & & &
\end{array}
$$

sole) Difference table.

x	y	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$	$u^{\text {th }}$
3	6	18	16	0	0
5	24	34	16	0	0
7	58	50	16	0	
9	108	66	forward formula		

By applying Newtons forward formula

$$
\begin{aligned}
y_{n} & =y_{0}+n \Delta y_{0}+\frac{n(n-1)}{2!} \Delta^{2} y_{0}+ \\
n & =\frac{x-x_{0}}{n} \quad x_{0}=3 ; x_{0}=x \quad h=2 \quad a=\frac{3-x}{2} \\
n & =\frac{x-3}{2} \\
y_{n} & =6+\left(\frac{x-3}{2}\right) 18+\left(\frac{2-3}{2}\right)\left(\frac{2-3}{2}-1\right) \\
& =6+9 x-27+\left(\frac{x-3}{2}\right)\left(\frac{x-5}{x}\right) \times 16 \frac{1}{x} \\
& =6+9 x-27+[x-3][x-5] 2 \\
& =6+9 x-27+\left[x^{2}-3 x-5 x+15\right] 2 \\
& =-21+9 x+2 x^{2}-6 x-10 x+30
\end{aligned}
$$

$$
y_{n}=2 x^{2}-7 x+9
$$

$\rightarrow_{7_{1618}^{0 t e} \text { By using Gauss Backward interpolating formulae . Find }}$; the value of y and $x=3.3$ from the following data
x

$$
15 \cdot 3 \quad 15 \cdot 1
$$

tolu) Difference table
$5 \quad 14 \quad-0.5 \quad$ Balcward formula
By using execution's
$y(3.3)=14.8912$ table find the value of y when $x=1.35$
6 from the following $1.4 \quad 1.6 \quad 1.8 \quad 2$

$$
\left.\begin{array}{ccccc}
\text { from the } & 1.2 & 1.4 & 1.6 \\
x: & 1 & 1.2 & 0.016 & 0.336
\end{array}\right)
$$

$$
\begin{aligned}
& .3360 .992 \\
& \text { why we used }
\end{aligned}
$$

$$
\begin{aligned}
& y_{n}=y_{0}+n \Delta y-1+\frac{n(n+1)}{2!} \Delta^{2} y_{-1}+\frac{(n+1) n(n-1)}{3!} \Delta^{3} y_{-1}+\frac{(n+2)(n+1) n}{4!}(n-1)(y) \\
& n=\frac{x-x_{0}}{h} ; x=3.3 ; x_{0}=3 ; \quad h=1 ; n=\frac{3.3-3}{1}=0.3 \\
& y(0.3)=15+(0.3)(10.1)+\frac{(0.3+1)(0.3)}{21}(-0.4)+\frac{(0.3+1)(0.3)(0.3-1}{31}(-0! \\
& \frac{+(0.3+2)(0.3+1)(0.3)(0.3-1)}{41}(+0.9) \\
& {\left[y_{n}=15+4.53-0.0195+0.0182\right]} \\
& y(3.3)=15-0.03-0.078+0.02275-0.02354625
\end{aligned}
$$

$$
\begin{aligned}
& x \quad y \\
& y \text { st } \\
& 1 x_{-2} 15.3 y-2-0.2 y_{-2}-0.2 y-2<0.5 y-2 \quad 0.9 y-2 \\
& \begin{array}{cccc}
2 x-1 & 15.1 y-1 & -0.1 y_{-1} \\
3 x_{0} & 15 y_{0} & 0.5 y_{0} & \frac{-0.4}{0} y_{0} \\
y_{0} & +0.4 y-1
\end{array} \\
& 4 \quad \begin{array}{lllll}
14.5 & 0.5 & 0 & y_{0} & y_{0}
\end{array}
\end{aligned}
$$

$x \quad y \quad$ ist $_{x} \quad 2^{n d} \quad 3^{1} d \quad{ }^{n}$ th

$$
\left.\left.\begin{array}{cc}
1 & 0.0 \\
1.2 x_{0} & -0.112 y-1 \\
1.4 & -0.016 \\
1.6 & 0.336 \\
1.8 & 0.992 \\
2 & 2
\end{array}\right\} \begin{array}{l}
-0.112 y^{4-1} \\
0.096 \\
0.352 \\
0.656 \\
-0.992 .
\end{array}\left\{\begin{array}{l}
0.208 y-1 \\
0.256 \\
0.304 \\
0.352
\end{array}\right\} \begin{array}{l}
0.048 \\
0.048 \\
0.048
\end{array}\right]\left[\begin{array}{l}
0
\end{array}\right]
$$

By applying Gaus backword interpolating formula
$\$$

$$
\begin{aligned}
& \text { By applying rauss } \\
& y_{n}=y_{0}+n \Delta y-1+\frac{(n+1) n}{2!} \Delta^{2} y-1+\frac{(n+1) n(n-1)}{3!} \Delta 3 y_{-2} \\
& \eta=\frac{x-x_{0}}{h} \quad x=1.35 \quad x_{0}=1.2 ; h=0.2 ; n=\frac{1.35-1.2}{0.2}=0.7 \\
& y(1.35)=(-0.112)+(0.75)(-0.112)+\frac{(0.75)(0.75+1}{21}(0.208) \\
& =-0.112-0.084+0.1365
\end{aligned}
$$

$$
\therefore y(1.35)=-0.0595
$$

W: Numerical Integration
unit -5 I The Solutions of Ordinary B
Differential Equation.
There are three jules

1. Tropizoidal Rule
2. Simpson $\frac{1}{3}$ rule
3. Simpson $\frac{3}{8}$ Rule

In Numerical integration, we solve the given problem by using the above rules.
$\begin{aligned} & \text { Trapizoidal Pule: } \\ & \int_{a}^{b} y d x=\frac{h}{2}\left[\left(y_{0}+y_{n}\right)+2\left(y_{1}+y_{2}+y_{3}+\cdots\right.\right.\end{aligned}$
Simpson $\frac{1}{3}$ Rule

$$
\begin{aligned}
& \int_{a} y d x=\frac{h}{3}\left[\left(y_{0}+y_{n}\right)+4\left(y_{1}+y_{3}+y_{5}+\cdots\right)\right. \\
& +2\left(y_{2}+y_{u}+y_{6}+[(18)]\right) \\
& \text { epson } \frac{1}{3} \text { Rule }
\end{aligned}
$$

Simpson $\frac{3}{8}$ Ruled

$$
\begin{aligned}
& \text { mpson } \frac{3}{8} \text { Rule } \\
& \int_{a}^{b} y d x=\frac{3 h}{8}\left[\left(y_{0}+y_{n}\right)+3\left(y_{1}+y_{2}+y_{4}+y_{5}+y_{7}+y_{8}+\cdots\right)\right. \\
& \left.\left.\quad+2 l y_{3}+y_{6}+y_{9}+\cdots\right)\right] \text { the given curve }
\end{aligned}
$$

$$
\begin{aligned}
& h=\frac{1}{4} \Rightarrow \\
& (8.1+8038.12+ \\
& \begin{array}{l}
x_{0}=a=0 \\
\therefore y_{0}=f\left(x_{0}\right)=f(0)=\frac{1}{1+0^{2}}=\left[8 \text { Usw.p }^{\prime} .\right.
\end{array} \\
& \left.\begin{aligned}
x_{1} & =x_{0}+h \\
& =0+\frac{1}{4}
\end{aligned} \right\rvert\, \begin{array}{l}
y_{1}=f\left(x_{1}\right) \\
1+x_{1}
\end{array} ; x_{1}=\frac{1}{4} 128+0= \\
& =\frac{1}{4}=\frac{1}{1+\left(\frac{1}{4}\right)^{2}}=\frac{16}{17}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (1) Trapizoidal Rule } \\
& \begin{aligned}
\int_{a}^{b} y_{d x} & =-\frac{h}{2}\left[\left(y_{0}+y_{4}\right)+2\left(y_{1}+y_{2}+y_{3} t\right)\right] \\
& \left.=\frac{1}{4}[(1+0.5)+2(0.9 u) 2+0.8+0.6 u)\right] \\
& =\frac{1}{8} \cdot[1.5+2(2.3812)] \\
& =\frac{1}{8}[1.5+4.7624] \\
& =0.7828
\end{aligned} \\
& \text { (2) Sumpson } 1 \text { Rule. }
\end{aligned}
$$

(2) Sympson $\frac{1}{3}$ Rule

$$
\begin{aligned}
\int_{a}^{b} y d x & =\frac{h}{3}\left[\left(y_{0}+y_{u}\right)+4\left(y_{1}+y_{3}\right)\right. \\
& =\frac{1}{4}[(1+0.5)+u(0.94) \\
& =\frac{1}{12}[1.5+4(1.5812)+1 \\
& =\frac{1}{12}[1.5+6.3248+1.6] \\
& =\frac{1}{12}[9.4248] \\
& =0.7854
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{h}{3}\left[\left(y_{0}+y_{u}\right)+4\left(y_{1}+y_{3}\right)+20\left(y_{2}+y u\right)\right] \\
& =1[1+0.5)+u(0.9 u(2)+0 \times 6 u)+2(0.8)]
\end{aligned}
$$

$$
\left.=\frac{1}{\frac{4}{3}}[(1++0.5)+u(0.9412)+0.6 u)+2(0.8)\right] \text { 5x+1 }
$$

$$
=\frac{1}{12}[1.5+4(1.5812)+1.6] \quad y=\frac{1}{s}=(x) \frac{0.9412}{x+1.58112}
$$

$$
\begin{aligned}
& x_{2}=x_{1}+h \quad y_{2}=f\left(x_{2}\right) \\
& x_{3}=x_{2}+h \\
& =\frac{1}{4}+\frac{1}{4} \quad=\frac{1}{1+x_{2}^{2}} \quad x_{2}=\frac{1}{2} \\
& =\frac{1}{2}+\frac{1}{4} \\
& =\frac{1}{2} \\
& =\frac{1}{1+\left(\frac{1}{2}\right)^{2}}=\frac{1}{1+\frac{1}{4}}=\frac{4}{5} \\
& y_{3}=f\left(x_{3}\right) . \\
& x_{u}=x_{3}+h \\
& y_{u}=f\left(x_{u}\right) \\
& =\frac{3}{4}+\frac{1}{4} \\
& =\frac{1}{1+x_{y}^{2}}, x_{y}=1 \\
& \text { ज1 } \frac{1}{1+x_{3} 2}, x_{3}=3 / 4 \\
& =\frac{1}{1+\left(\frac{3}{u}\right)^{2}}=\frac{1}{1+\frac{9}{16}}=\frac{16}{25} \\
& =1 \\
& =\frac{1}{T+1^{2}}=\frac{1}{1+1} \\
& \text { noitorpotii } \quad=\frac{1}{2} \\
& . y_{3}=0.64 ; y_{u}=0.5 \\
& \therefore y_{0}=1 ; y_{1}=0.9412 ; y_{2}=0.8 ; y_{3}=0.64 ; y_{u}=0.5
\end{aligned}
$$

(3) Sympson $\frac{3}{8}$ Rule

$$
\begin{aligned}
& \int_{a}^{b} y d x=\frac{3 h}{8}\left[\left(y_{0}+y_{u}\right)+3\left(y_{1}+y_{2}\right)+2\left(y_{3}\right)\right] \\
&=\frac{3 \frac{1}{u}}{8}[(1+0.5) 413(0.9412+0.8)+2(0.6 u)] \\
&=\frac{3}{32}[1.5+3(1.7412)+1.28] \\
&=\frac{3}{32}[1.5+5.2236+1.28]+ \\
&=\frac{3}{32}[8.0036] \\
&=\frac{24.0108}{32}=0.7503375=0.7503 \\
& 0
\end{aligned}
$$

2. Evoluate $\int_{\frac{1}{x}}^{2} d x$ where $n=4$
solelf $f(x)=\frac{1}{x}, \quad n=4, \quad a=1, \quad b=2 \quad n=\frac{b-a}{n}=\frac{2-1}{14}=\frac{1}{4}$

$$
\begin{aligned}
& x_{0}=a=1 ; y_{0} f\left(x_{0}\right)=\frac{1}{x_{0}}=\frac{1}{1} \neq 1 \\
& x_{2}=x_{0}+h \\
& y_{1}=f\left(x_{1}\right) \\
& =1+\frac{1}{4} \\
& \left.=\frac{1}{x_{1}} \partial 28 \mathrm{~N} \cdot 2+2 \cdot 1\right] \frac{1}{41} \\
& =\frac{5}{4} \\
& =\frac{\sec }{\frac{5}{4}}=\frac{4}{5}=\text { रोह 8 } \\
& x_{2}=x_{1}+h \\
& y_{2}=f\left(x_{2}\right) \\
& {\left[(N)=\frac{5}{4}+\frac{1}{4}\right.} \\
& \begin{aligned}
&=\frac{4}{4}=\frac{5}{2} d d d \cdot 0+8 \cdot 0=\frac{1}{8 \frac{3}{2}} \\
&= x_{2}+h \cdot 1+2 \cdot \\
&==\frac{3}{2}+\frac{1}{4} \\
&=\frac{1}{x_{3}}
\end{aligned} \\
& =\frac{6+1}{4} \\
& =\frac{7}{4} \\
& x_{u}=x_{3}+h \\
& =\frac{7}{4}+\frac{1}{4} \\
& =\frac{8}{4}=2 \\
& \left.=\frac{1}{\frac{7}{4} 11}+2.1\right] \\
& =\frac{4}{7} \\
& y_{u}=f(x u) \\
& =\frac{1}{x_{4}}+\frac{851 \cdot 1 s}{s}= \\
& =\frac{1}{2}+\operatorname{cod} \cdot 0=
\end{aligned}
$$

$$
y_{0}=1, \quad y_{1}=0.8 ; \quad y_{2}=0.6667 ; \quad y_{3}=0.5714, \quad y_{u}=0.5
$$

(1) By Trapizoidal Rule

$$
\begin{aligned}
\int_{a}^{b} y d x & =\frac{h}{2}\left[\left(y_{0}+y_{H}\right)+2\left(y_{1}+y_{2}+y_{3}\right)\right. \\
& =\frac{\frac{1}{2}}{2}[(1+0.5)+2(0.8+0.6667+0.571 u)] \\
& =\frac{1}{82}[1.5+2(2.0384)] \\
& =\frac{1}{8}[1.5+4.0768] \\
& =\frac{5.5768}{2}=0.46447338=0.4648=0.6971
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2. Sympson } \frac{1}{3} \text { Rule } \\
& \begin{aligned}
\frac{1}{a} \frac{b}{a d x} & \left.=\frac{h}{3} \cdot\left[y_{0}+y_{u}\right)+u\left(y_{1}+y_{3}\right)+2 y_{2}\right] \\
& =\frac{1}{4}[(1+0.5+4(0.8+0.5714)+2(0.6667)] \\
& =\frac{1}{12}[1.5+4(1.3714)+.13334] \\
& =\frac{1}{12}[1.5+5.4856+1.3334] \\
& =\frac{8.319}{12}=0.69325
\end{aligned}
\end{aligned}
$$

3. Simpson $\frac{3}{8}$ Rule

$$
\begin{aligned}
& \text { Simpson } \frac{\frac{3}{8} \text { Rule }}{\begin{aligned}
\int_{a}^{b} y d x & =\frac{3 h}{8}\left[\left(y_{0}+y_{u}\right)+3\left(y_{1}+y_{2}\right)+2\left(y_{3}\right)\right] \\
& =\frac{3\left(\frac{1}{4}\right)}{8}\left[(1+0.5) \frac{1}{+3}(0.8+0.6667)+2(0.5714)\right] \\
& =\frac{3}{32}[1.5+3(1.4667)+2(0.571 u)] \\
& =\frac{3}{32}[1.5+4.4001+1.1428] \\
& =\frac{3}{32}[7.0429] \\
& =\frac{21.1287}{32} \\
& =0.660271875=0.6602
\end{aligned}} .\left\{\begin{array}{l}
\text { (8) }
\end{array}\right.
\end{aligned}
$$

3. Evaluate $\int_{0}^{1} \frac{1}{x+1} d x, n=5$

$$
\begin{aligned}
& \text { Evaluate } \int_{0}^{0} \frac{1}{x+1} d x, n=5 \\
& \\
& \qquad \begin{array}{rlr}
y=f(x)=\frac{1}{x+1}, n=5 \quad a=0, \quad b=1 \quad h=\frac{b-a}{n}=\frac{1-0}{5}=\frac{1}{5} \\
h & =\frac{1}{5} \\
x_{0}=a=0 & y_{b}=f\left(x_{0}\right) \quad y_{1}=f\left(x_{1}\right) \\
x_{1}=x_{0}+h & =\frac{1}{0+1} & \frac{1}{5}+1 \\
& =0+\frac{1}{5} & =\frac{1}{1} \\
& =\frac{1}{5} & =1
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
x_{2} & =x_{1}+h \\
& =\frac{1}{5}+\frac{1}{5} \\
& =\frac{2}{5}
\end{aligned}
$$

$$
y_{2}=f\left(x_{2}\right)
$$

$$
x_{5}=x_{u}+h
$$

$$
=\frac{1}{\frac{2}{5}+1}
$$

$$
=\frac{4}{5}+\frac{1}{5}
$$

$$
\pm 1
$$

$$
=\frac{5}{7}
$$

$$
y_{5}=f\left(x_{4}\right)
$$

$$
\begin{aligned}
& x_{3}=x_{2}+h \\
& =\frac{2}{5}+\frac{1}{5}
\end{aligned}
$$

$$
y_{3}=f\left(x_{3}\right)
$$

$$
=\frac{1}{1+1}
$$

$$
=\frac{1}{2}
$$

$$
=\frac{3}{5}
$$

$$
=\frac{5}{8}
$$

$$
x_{4}=x_{3}+h
$$

$$
y_{u}=f\left(x_{u}\right)
$$

$$
=\frac{3}{5}+\frac{1}{5}
$$

$$
=\frac{4}{5}
$$

$$
=\frac{1}{\frac{4}{5}+1}
$$

$$
=\frac{5}{9}
$$

$$
\begin{gathered}
=\frac{5}{9} ; \quad y_{1}=0.8133 ; ; y_{2}=0.71432 \\
x_{0}=0, \quad y_{0}=1 ; \quad y_{4}=0.5556 ; y_{5}=0.5 ; h=0.2 \\
y_{3}=0.625 ;
\end{gathered}
$$

(1) By Trapizoidal Rule.

$$
\begin{aligned}
& \text { By Trapijoidal Rule. } \\
& \begin{aligned}
& \int_{a}^{b} y \cdot d x=\frac{h}{2} \cdot\left[\left(y_{0}+y_{5}\right)+a t y+y_{2}\right)+2\left(y_{1}+y_{2}\right] \\
&\left.+y_{3}+y_{4}\right)
\end{aligned} \\
& \\
& = \\
& =\frac{0.2}{2}[(1+0.5)+2(0.8333+0.7143+0.625+0.5556) \\
& \\
& =0.1[1.5+2[2.7282] \\
& \\
& =0.1[1.5+5.4564] \\
& \\
& = \\
&
\end{aligned}
$$

(2) By simpson $\frac{1}{3}$ rule

$$
\begin{aligned}
\int_{a}^{b} y d x & =\frac{h}{3}\left[\left(y_{0}+y_{5}\right)+u\left(y_{1}+y_{3}\right)+2\left(y_{2}+y_{u}\right)\right] \\
& =\frac{0.2}{3}[(1+0.5)+u(0.8333+0.625)+2(0.71 u 3+0.5551 \\
& =\frac{0.2}{3}[1.5+u(1.4583)+2(1.2699) \\
& =\frac{0.2}{3}[1.5+5.8332+2.5398] \\
& =\frac{0.2}{3}[9.873] \\
& =0.2[3.291] \\
& =0.6582
\end{aligned}
$$

(3) By simpson $\frac{3}{8}$ Rule

$$
\begin{aligned}
& \text { By Simpson } \frac{3}{8} \text { Rule } \\
& \begin{aligned}
\int_{a}^{b} y d x & =\frac{3 h}{8}\left[\left(y_{0}+y_{5}\right)+3\left(y_{1}+y_{2}+y_{u}\right)+2\left(y_{3}\right)\right] \\
& =\frac{3(0.2)}{8}[(1+0.5)+3(0.8333+0.7143+0.5556) \\
& =\frac{0.6}{8}[1.5+3(2.625)] \\
& =\frac{0.6}{8}[1.5+6.3096+1.25] \\
& =0.6 \underline{[9.0896]} \\
& =(0.6)(1.9345) \\
& =0.6795
\end{aligned}
\end{aligned}
$$

4 Evaluate $\int_{0}^{6} \frac{d x}{1+x^{2}} \quad n=6$
(solve

$$
\begin{aligned}
& y=f(x)=\frac{1}{1+x} \quad a=0, \quad b=6 ; n=6 \quad h=\frac{b-a}{n}=\frac{6-0}{6}=1 \\
& x_{0}=a=0, \quad y_{0}=f\left(x_{0}\right)=\frac{1}{1+0}=1 \\
& \begin{aligned}
y_{1}=x_{0}+h & x_{1}
\end{aligned}=f\left(x_{1}\right) \\
& =1 \\
& =\frac{1}{1+1}=\frac{1}{2}=0.5 \\
& x_{2}=x_{1}+h \\
& =1+1 \\
& =2 \\
& y_{2}=f\left(x_{2}\right) \\
& =\frac{1}{r+2}=\frac{1}{3}=0.3334
\end{aligned}
$$

$$
\begin{aligned}
& x_{3}=x_{2}+h \\
& y_{3}=f\left(x_{3}\right) \quad x_{6}=x_{5}+h \quad y_{6}=f\left(x_{6}\right) \\
& y_{3}=f\left(x_{3}\right) \quad x_{6}=x_{5}+h \quad y_{6}=f\left(x_{6}\right) \\
& y_{3}=f\left(x_{3}\right) \quad x_{6}=x_{5}+h \quad y_{6}=f\left(x_{6}\right) \\
& =2+1 \\
& \begin{array}{l}
=\frac{1}{1+3} \\
=\frac{1}{4}=0.25
\end{array} \\
& \begin{aligned}
& =5+1 \\
& =6
\end{aligned} \\
& \begin{aligned}
& =x_{5}+h \\
& =5+1 \\
& =6
\end{aligned} \quad=\frac{1}{1+6}=\frac{1}{7} \\
& =3 \\
& \begin{array}{l}
=\frac{1}{1+3} \\
=\frac{1}{4}=0.25
\end{array} \\
& =6 \\
& =0.1428 \\
& x_{4}=x_{3}+h \\
& y_{4}=f\left(x_{4}\right) \\
& =3+1 \\
& =4 \\
& =\frac{1}{1+4}=\frac{1}{5}=0.2 \\
& x_{5}=x_{u}+h \\
& y_{5}=f\left(x_{5}\right) \\
& =u+1 \\
& =\frac{1}{1+5}=\frac{1}{6}=0.16667 \\
& =5 \\
& \text { - } 4 \\
& x_{0}=0, y_{0}=1, y_{1}=0.5, y_{2}=0.3334, y_{3}=0.25 ; y_{4}=0.2 \\
& y_{6}=0.1428
\end{aligned}
$$

(1) Trapizoidal Rule

$$
\begin{aligned}
& \text { Trapizoidal Rule } \\
& \begin{aligned}
\int_{a}^{b} y d x & =\frac{h}{2}\left[\left(y_{0}+y_{6}\right)+2\left(y_{1}+y_{2}+y_{3}+y_{4}+y_{5}\right)\right. \\
& =\frac{1}{2}[(1+0.1428)+2(0.5+0.3334+0.25+0.2+0.1667)] \\
& =0.5[(1.1428)+2(1.4501)] \\
& =0.5[1.1428+2.9002] \\
& =0.5[4.043] \\
& =2.0215
\end{aligned}
\end{aligned}
$$

(2) Simpson $\frac{1}{3}$ Rule.

$$
\begin{aligned}
& \text { Simpson } \frac{\frac{1}{3} \text { Rule. }}{} \begin{aligned}
\int_{a}^{b} y d x & =\frac{3 h}{8}:\left[\left(y_{0}+y_{6}\right)+4\left(y_{1}+y_{3}+y_{5}\right)+2\left(y_{2}+y_{4}\right)\right] \\
& \left.=\frac{1}{3}[(1+0.1428)+4(0.5+0.25+0.1667)+2(0.3334]+0.2)\right] \\
& =0.3334[1.1428+4(0.9167)+2(0.5334)] \\
& =0.3334[1.1428+3.6668+1.0668] \\
& =0.334[5.8764] \\
& =1.95919176
\end{aligned}
\end{aligned}
$$

(3) Simpson $\frac{3}{8}$ Rule

$$
\begin{aligned}
\int_{a}^{b} y d x & =\frac{3 h}{8}\left[\left(y_{0}+y_{6}\right)+3\left(y_{1}+y_{2}+y_{4}+y_{5}\right)+2\left(y_{3}+y\right.\right. \\
& =\frac{3(1)}{8}[(1+0.1428)+3(0.5+0.3334+0.2+0.1667)+2(0.2 y] \\
& =0.375[1.1428+3(1.2001)+0.5 \\
& =0.375[1.1428+3.6003+0.5] \\
& =0.375[5.2431]
\end{aligned}
$$

$$
=1.9661625
$$

5. Evaluate $\int_{0}^{4} e^{x} d x$ given $e=2.72 \quad e^{2}=7.39 \quad e^{3}=20.09$

$$
e^{4}=54 \cdot 6 ; n=4
$$

Solus) $y=f(x)=e^{x}, \quad n=u, \quad a=0, \quad b=4 \quad h=\frac{b-a}{n}=\frac{4-0}{u}=1$

$$
\begin{array}{rlrl}
x_{0} & =a=0 & y_{0}=f\left(x_{0}\right)=e^{0}=1 \\
\left(f x_{1}\right. & =x_{0}+h & & y_{1}=f\left(x_{1}\right)=e^{x_{1}}=e^{\prime}=2.72 \\
& =1 & & y_{2}=f\left(x_{2}\right) \\
x_{2} & =x_{1}+h & & =e^{x_{2}}=e^{2}=7.39 \\
& =1+1 & & y_{3}=f\left(x_{3}\right) \\
& =2 & & =e^{x_{3}}=e^{3}=20.09 \\
x_{3} & =x_{2}+h & & y_{4}=f\left(x_{4}\right) \\
& =2+1 & & \\
& =3 & & =e^{x_{4}}=e^{4}=54.6 \\
x_{4} & =x_{3}+h & &
\end{array}
$$

$$
x_{0}=0 ; y_{0}=1 ; y_{1}=2.72 ; y_{2}=7.39, y_{3}=20.09 ; y_{4}=54.6
$$

1) Trapizoidal Rule

$$
\begin{aligned}
\int_{a}^{b} y d x & =\frac{h}{2}\left[\left(y_{0}+y_{u}\right)+2\left(y_{1}+y_{2}+y_{3}\right)\right] \\
& =\frac{1}{2}[(1+5 u .6)+2(2.72+7.39+20.09)] \\
& =0.5[59.6+2(30.2)] \\
& =0.5[55.6+60.4] \\
& =0.5[116] \\
& =58
\end{aligned}
$$

2) Simpson $\frac{1}{3}$ rule:.

$$
\begin{align*}
\int_{a}^{b} y d x & =\frac{h}{3}\left[\left(y_{0}+y_{4}\right)+4\left(y_{1}+y_{3}\right)+2\left(y_{2}\right)\right] \\
& =\frac{1}{3}[(1+54.6)+4(2.72+20.09)+2(7.39)] \\
& =\frac{1}{3}[55.6+4(22.81)+14.78] \\
& =\frac{1}{3}[55.6+91.24+14.78] \\
& =\frac{161.62}{3} \\
& =53.8733
\end{align*}
$$

3) Simpson $\frac{3}{8}$ Rule

$$
\begin{aligned}
& \text { simpson } \frac{3}{8} \text { Rule } \\
& \begin{aligned}
\int_{a}^{b} y d x & =\frac{3 h}{8}\left[\left(y_{0}+y_{u}\right)+3\left(y_{1}+y_{2}\right)+2\left(y_{3}\right)\right] \\
& \left.=\frac{3 u}{8}\right)[(1+5 u .6)+3(2.72+7.39)+2(20.09)] \\
& =\frac{3}{8}[55.6+3(10.11)+2(20.09)] \\
& =0.375[55.6+30.33+40.18] \\
& =0.375[126.11]
\end{aligned}
\end{aligned}
$$

6. The velocity of a car running on a straight line

$$
=47.29125
$$

Time: $0 \begin{array}{lllllll} & 2 & 4 & 6 & 18 & 7 & 0\end{array}$
find the distance covered by the car Solus since we know that rate of change of displacement is called velocity. ie. $\left[\begin{array}{l}\text { rate of called acceleration } \\ \text { is call }\end{array}\right.$

$$
\begin{aligned}
\frac{d s}{d t} & =v \\
d s & =v d t \\
s & =\int_{0}^{12} v d t
\end{aligned}
$$

1) Trapizoidal Rule

$$
\begin{aligned}
s=\int_{0}^{12} v d t & =\frac{h}{2}\left[\left(y_{0}+y_{6}\right)+2\left(y_{1}+y_{2}+y_{3}+y_{u}+y_{5}\right)\right. \\
& =\frac{2}{2}[(0+0)+2(22+30+27+18+7) \\
& =2[104] \\
& =208
\end{aligned}
$$

2) Simpson $\frac{1}{3}{ }^{\text {rd }}$ Rule

$$
\begin{aligned}
& \text { simpson } \frac{1}{3}{ }^{\text {rd }} \text { Rule } \\
& S=\int_{0}^{12} v d t=\frac{h}{3}\left[\left(y_{0}+y_{6}\right)+4\left(y_{1}+y_{3}+y_{5}\right)+2\left(y_{2}+y_{u}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\pi}{3}\left[\left(y_{0}+y_{6}\right) 1\right. \\
& =\frac{2}{3}[(0+0)+4(22+27+7)+2(30+18)] \\
& 3)_{18}(6
\end{aligned}
$$

$$
=\frac{2}{3}[4(36)+2(48)]
$$

$$
=\frac{2}{3}[22 u+96]
$$

$$
=\frac{2}{3}[320]
$$

$$
=213.333
$$

3) Simpson $\frac{3}{8}$ Rule

$$
\begin{aligned}
& \text { Simpson } \frac{3}{8} \text { Rule } \\
& \begin{aligned}
S=\int_{0}^{12} v d t & =\frac{3 h}{8}\left[\left(y_{0}+y_{6}\right)+3\left(y_{1}+y_{2}+y_{u}+y_{5}\right)+2\left(y_{3}\right)\right. \\
& =\frac{3(x)}{s_{4}}[(0+0)+3(22+30+18+7)+2(27)] \\
& =\frac{3}{4}[3(77)+5 y] \\
& =\frac{3}{4}[231+54] \\
& =\frac{3}{4} \times 285 \\
& =213.75 .
\end{aligned}
\end{aligned}
$$

7 The velocity \dot{v} of a particle at a distance s from a point on its path. is given by the table below. $\begin{array}{cccccccc}5 & 0 & 10 & 20 & 30 & 40 & 50 & 60 \\ \text { velocity } & 47 & 58 & 64 & 65 & 61 & 42 & 38\end{array}$

Estimate the time taken to travel 60 m by using the Rules. sole) Since we know. that the rate of change of displacement

$$
\begin{aligned}
& \text { Since we velocity. } \\
& \text { is called the v}=\frac{d s}{d t} \Rightarrow d t=\frac{1}{v} d s \\
& t=\int_{0}^{60} \frac{1}{v} d s . \\
& \left.\frac{1}{v}=\frac{1}{47}=0.0212\left(y_{0}\right)^{0}, \frac{1}{58}=0.0172\left(y_{1}\right)\right) \frac{1}{64}=0.0156\left(y_{2}\right) \\
& \frac{1}{65}=0.01538\left(y_{3}\right) ; \frac{1}{61}=0.0164\left(y_{u}\right) ; \frac{1}{5^{2}}=0.0192(y s) \\
& \frac{1}{38}=0.0263\left(y_{6}\right)
\end{aligned}
$$

1) Trapizoidal Rule
2) Simpson $\frac{1}{3}$ Rule

$$
=1151.01
$$

epode
10 A river is 80 meters wide. The depth y of the river at a distance ' x ' from one bank is given by the following

$$
\begin{array}{cccccccccc}
l & & & & & & 50 & 50 & 70 & 80 \\
\text { table } \\
x & 0 & 10 & 20 & 30 & 12 & 15 & 14 & 8 & 3 \\
y & 0 & 4 & 7 & 9 & 12 & &
\end{array}
$$

find the approximate area of the cross section of the
solus Since we know that the cross section area of the given river is

$$
A=\int_{0}^{80} y d x
$$

1) By trapizoidal Rule.
)

$$
\begin{aligned}
& \text { By trapizoidal Rule. } \\
& \begin{aligned}
\int_{0}^{80} y d x & =\frac{h}{2}\left[\left(y_{0}+y_{8}\right)+2\left(y_{1}+y_{2}+y_{3}+y_{u}+y_{5}+y_{6}+y_{7}\right)\right. \\
E & \frac{10}{2}[(0+80)+2(10+20+30+40+50+60+70) \\
& =5(80+2(280)] \\
= & =\frac{10}{2}[(0+3)+2(40+7+9+12+15+7 \\
& =5 \times 640] \\
& =3200]
\end{aligned}
\end{aligned}
$$

2) Simpson $\frac{1}{3}$ rd Rule

$$
\begin{aligned}
& \text { Simpson } \frac{1}{3}{ }^{r d} \text { Rule } \\
& \int_{0}^{80} y d x=\frac{h}{3}\left[\left(y_{0}+y_{8}\right)+u\left(y_{1}+y_{3}+y_{5}+y_{7}\right)+2\left(y_{2}+y_{4}+y_{6}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{h}{3}\left[\left(y_{0}+y_{8}\right)+4 y_{1}\right. \\
& =\frac{18}{3}[(0+3)+4(u+9+15+1 u)+2(7+12+1 u)]
\end{aligned}
$$

$$
=\frac{10}{3}[3+4(42)+2(33)]
$$

$$
=\frac{10}{3}[3+1444+66]
$$

$$
=\frac{10}{3} \times 233=710 \text { sq. units }
$$

3) Simpson $\frac{3}{8}$ Rule

$$
\text { 3) } \begin{aligned}
\text { Simpson } \frac{3}{8} \text { Rule } \\
\begin{aligned}
\int_{0}^{1} y d x & =\frac{3 h}{8}\left[\left(y_{0}+y_{8}\right)+3\left(y_{1}+y_{2}+y_{4}+y_{5}+y_{7}\right)+2\left(y_{3}+y_{6}\right)\right] \\
& =\frac{3(10)}{8}[(0+3)+3(4+7+12+15+8)+2(9+14)] \\
& =\frac{30}{8}[3+3(46)+2(23)] \\
& =\frac{35}{84}[3+138+46] \\
& =\frac{15}{4} \times 167
\end{aligned}
\end{aligned}
$$

11. A train is moving at the speed of $30 \mathrm{~m} / \mathrm{s}$. suddenly

$$
=701.25
$$ breaks are applied. The speed of the train fer second after t seconds is given by

solus find the distance moved by the train in 45 seconds. Since we know that

$$
\begin{aligned}
& v=\frac{d s}{d t} \\
& \Rightarrow d s=v d t \quad h=5 \\
& \quad g=\int_{0}^{v 5} v d t \quad
\end{aligned}
$$

1) Trapizoidal Rule

$$
\begin{aligned}
& \text { 1) Trapizoidal Rule } \\
& \begin{aligned}
\int_{0}^{u 5} v d t & \left.=\frac{h}{2}\left[y_{0}+y_{9}\right)+2\left(y_{1}+y_{2}+y_{3}+y_{4}+y_{5}+y_{6}+y_{7}+y_{8}\right)\right] \\
& \left.=\frac{5}{2}[60+5)+2(30+2 u+9+16+13+11+909.8+7)\right] \\
& =\frac{5}{2}[35+2(108)] \\
& =\frac{5}{2}[35+216] \\
& =\frac{5}{2}[251]=\frac{125.5}{2} \\
& =627.5
\end{aligned}
\end{aligned}
$$

2) Simpson $\frac{1}{3}$ Rule

$$
\begin{aligned}
& \operatorname{Simpson} \frac{\frac{1}{3} \text { Rule }}{\int_{0}^{45} v d t} \begin{aligned}
& =\frac{h}{3}\left[\left(y_{0}+y_{9}\right)+4\left(y_{1}+y_{3}+y_{5}+y_{7}\right)+2\left(y_{2}+y_{4}+y_{6}\right)-y_{8}\right) \\
& =\frac{5}{3}[(30+5)+4(30+24+16+11+8)+2(198+13+10 \\
& =\frac{5}{3}\left[(35)+4\left(\frac{x 93}{59}\right)+2(47)\right] \\
& =\frac{5}{3}\left[35+\cdot \frac{4+2}{236}+984\right] \\
& \left.=\frac{5}{3}[881]=\frac{54}{3}\right] \frac{1845}{3} \\
& {[=885] 615 . }
\end{aligned}
\end{aligned}
$$

3) $\operatorname{simpson} \frac{3}{8}$ Rule

$$
\begin{aligned}
& \text { 3) } \begin{aligned}
& \text { Simpson } \frac{3}{8} \text { Rule } \\
& \begin{aligned}
\int_{0}^{u 5} v d t & =\frac{3 h}{8}\left[\left(y_{0}+y_{9}\right)+3\left(y_{1}+y_{2}+y_{4}+y_{5}+y_{7}+y_{8}\right)+2\left(y_{3}+y_{6}\right)\right] \\
& =\frac{3 \times 5}{8}[(30+5)+3(24+19+13+11+8+7)+2(16+10)] \\
& =\frac{15}{8}[35+3(161)+2(26)]=\frac{15}{8}[35+483+52] \\
& =\frac{15}{8}\left[\begin{array}{c}
870 \\
333
\end{array}\right]=1068.75=\frac{4995}{8}=624.375
\end{aligned}
\end{aligned}>=\begin{array}{l}
\text { or was measured as }
\end{array}
\end{aligned}
$$

12. In an experiment, a quantity, or was measured as
follows.

$$
\begin{aligned}
G(24) & =99.56 \\
& =100.41
\end{aligned}
$$

Solus) $\begin{array}{llllllll}x & 20 & 21 & 22 & 26 & 26 & 26 & 24 \\ y & 95.9 & 96.85 & 97.77 & 98.68 & 99.56 & 100.41 . & 101.24\end{array}$

$$
\begin{aligned}
& \text { follows } \begin{array}{l}
G(20)=95.9 \\
G(21)=96.85
\end{array} \quad \text { compute } \int_{20}^{26} G(x) d x
\end{aligned}
$$

$$
G(22)=97.77
$$

$$
G(23)=98.68
$$

$$
G(25)=100.41
$$

$$
G(x 6)=
$$

1) Given $G(26)=101.24$
2) Trapizoidal Rule

$$
\begin{aligned}
\int_{20}^{26} G(x) & =\frac{h}{2} d x \\
& =\frac{1}{2}[(95.9+101.2 u)+2(96.85+97.77+98.68+99.56 \\
& +100 . u))] \\
& =0.5[197.14+2(493.27)] \\
& =0.5[197.14+986.5 u] \\
& =0.5[1183.68] \\
& =591.84 .
\end{aligned}
$$

2) Simpson $\frac{1}{3}$ rd Rule

$$
\begin{aligned}
& \text { Simpson } \frac{\frac{1}{3} \text { Rule }}{} \begin{aligned}
\int_{20}^{26} G(x) d x & =\frac{h}{3}\left[\left(y_{0}+y_{6}\right)+u\left(y_{1}+y_{3}+y_{5}\right)+2\left(y_{2}+y_{u}\right)\right] \\
& =\frac{1}{3}[(95.9+10) .2 u)+4(96.85+98.68+100.41) \\
& +2 .(97.77+99.56)] \\
& =0.3333[197.14+4(295.94)+2(197.33)] \\
& =0.3333[197.14+1183.76+394.66] \\
& =0.3333[1775.56] \\
& =591.794148
\end{aligned}
\end{aligned}
$$

3) Simpson $\frac{3}{8}$ Rule.

$$
\begin{aligned}
& \text { Simpson } \frac{3}{8} \text { Rule. } \\
& \begin{aligned}
\int_{20}^{26} G(x) d x= & \frac{3 h}{8}\left[\left(y_{0}+y_{6}\right)+3\left(y_{1}+y_{2}+y_{4}+y_{5}\right)+2\left(y_{3}\right)\right] \\
= & \frac{3}{8}[(95.9+101.24)+3(96.85+97.77+99.56 \\
& +100.41)+2(98.68)] \\
= & 0.375[197.14+3(394.59)+2(98.68)] \\
= & 0.375[197.14+1882.841183 .77+197.36] \\
= & 0.375[1578.27] \\
= & 591.85125
\end{aligned}
\end{aligned}
$$

13 The speed of a train at varies times after leaving one station until it stops at another station are given in the following table
find the distance between the two stations.
time: $\begin{array}{llllllll}0 & 0.5 & 1 & 1.5 & 2 & 2.5 & 3 & 3.5\end{array}$
find the distance that the rate of change of displacement solus) since we know that the rate of change of a is called velocity

$$
\begin{aligned}
\frac{d s}{d t} & =v \\
d s & =v d t \\
s & =\int_{0}^{4} v d t
\end{aligned}
$$

$$
\text { 1) } \begin{aligned}
\text { Trapizoidal Rule } \\
\begin{aligned}
\int_{0}^{u} v d t & =\frac{h}{2}\left[\left(y_{0}+y_{8}\right)+2\left(y_{1}+y_{2}+y_{3}+y_{u}+y_{5}+y_{6}+y_{7}\right)\right] \\
& =\frac{0.5}{2}[(0+0)+2(13+33+39.5+40+40+36+15)] \\
& =\frac{0.5}{2}[2(216.5)] \\
& =0.25[433) \\
& =108.25
\end{aligned}
\end{aligned}
$$

2) $\operatorname{Jimpsin} \frac{1}{3} r d$ Rule
3) Simpson $\frac{3}{8}$ rule

$$
\begin{aligned}
& \text { simpson } \frac{3}{8} \text { Rule } \\
& \begin{aligned}
\int_{0}^{y_{v}} d t & =\frac{3 h}{8}\left[\left(y_{0}+y_{8}\right)+3\left(y_{1}+y_{2}+y_{4}+y_{5}+y_{7}\right)+2\left(y_{3}+y_{6}\right)\right] \\
& =\frac{3(0.5)}{8}[(0+0)+3(13+33+40+40+15)+2(39.5+36)]
\end{aligned}
\end{aligned}
$$

at $\left.0=0.187 \delta)(141)^{\prime} 3+2(175.5)\right)$ niort

$$
\begin{aligned}
& =0.1875[423+151] \\
& =0.1875(57 u) \\
& =107.625
\end{aligned}
$$

forms
14. Evaluate $\int_{0}^{6} \frac{d x}{1+x^{4}} \quad n=6$
solus Given

$$
y_{0}=f\left(x_{0}\right)=\frac{1}{1+(0) u}=\frac{1}{1}=1=1
$$

$$
\begin{aligned}
x_{1} & =x_{0}+h \\
& =0+1
\end{aligned} \quad \begin{array}{ll}
y_{2}=f\left(x_{2}\right)=\frac{1+(0) 4}{1+2^{4}}=\frac{1}{1+16}=\frac{1}{17}=0.05882{ }_{4 x} \text { lis }
\end{array}
$$

$$
=1
$$

$$
x_{2}=x_{1}+h
$$

$$
y_{3}=f\left(x_{3}\right)=\frac{1}{1+34}=\frac{1}{1+81}=\frac{1}{82}=0.012195 \frac{\frac{16}{94}}{\frac{16}{28}}
$$

$$
=1+1
$$

$$
=2
$$

$$
y_{B_{1}}=f\left(x_{B_{1}}\right)=\frac{1}{1+44}=\frac{1}{1+256}=\frac{1}{257}=0.003891
$$

$$
=2+1
$$

$$
y_{y}=f\left(x_{5}\right)=\frac{1}{1+54}=\frac{1}{1+625}=\frac{1}{626}=0.001597
$$

$$
y_{1}=f\left(x_{1}\right)=\frac{1}{1+1}=\frac{1}{2}=0.5
$$

$$
\begin{aligned}
x_{4} & =x_{3} \text { th } \begin{array}{ll}
x_{5} & =x_{4} \text { th } \\
& =3+1 \\
& =4+1 \\
& =4
\end{array} \quad \begin{aligned}
x_{6} & =5 \\
& =x_{5}+h
\end{aligned} \quad y_{6}=f\left(x_{6}\right)=\frac{1}{1+64}=\frac{1}{1+1296}=\frac{1}{1297}=0-00077101
\end{aligned}
$$

1) Trapizoidal Rule $=5,1=6$

$$
\begin{aligned}
\int_{a}^{\text {Trapizoidal }} y d x & =\frac{h}{2}\left[\left(y_{0}+y_{6}\right)+2\left(y_{1}+y_{2}+y_{3}+y_{4}+y_{5}\right)\right] \\
& =\frac{1}{2}[(1+0.00071)+2(0.5+0.05882+0.012195+0.003891 \\
& =\frac{1}{2}[1.00071+2(0.576503)] \\
& =0.5[1.00071+1.8153006] \\
& =0.5[2.153716] \\
& =1.076858
\end{aligned}
$$

2) Simpson $\frac{1}{3}$ rd Rule. (z

$$
\text { 2) Simpson } \frac{1}{3} \text { rd Rule. } \begin{aligned}
\int_{a}^{b} y d x= & \frac{h}{3}\left[\left(y_{0}+y_{6}\right)+4\left(y_{1}+y_{3}+y_{5}+y_{2} \neq y_{2}+y_{4}\right)\right] \\
= & \frac{1}{3}[(1+0.00071)+4(0.5+0.012195+0.001597) \\
& +2(0.05882+0.003891)] \\
= & \frac{1}{3}[1.00071+4(0.513792)+2(0.062711)] \\
= & \frac{1}{3}[1.00071+2.055168+0.125422] \\
= & \frac{1}{3}[3.1813] \\
= & 1.06043333]
\end{aligned}
$$

3) Simpson $\frac{3}{8}$ Rule simpson $\frac{1}{3}$ rd Rule by dividing the range of integration into 4 equal ports
(vel) Given $\int_{0}^{1} \frac{x^{2}}{1+x^{3}} d x$

$$
\begin{array}{rlrl}
x_{2} & =x_{1}+h & y_{2} & =\frac{x_{2}}{1+x_{2}^{3}}=\frac{(0.5)}{1+(0.5)^{3}}=\frac{0.25}{1+0.125}=\frac{0.25}{1.125} \\
& =0.25+0.25 \\
& =0.5 & & =0.2222 \\
x_{3} & =x_{2}+h & y_{3} & =\frac{x_{3}^{2}}{1+x_{3}^{3}}=\frac{(0.75)^{2}}{1+(0.75)^{3}}=\frac{0.5625}{1+0.421875}=\frac{0.5625}{1.421875} \\
& =0.5+0.25 & & =0.3956 \\
& =0.75 & & y_{4}=\frac{x_{4}^{2}}{1+x_{4}^{3}}=\frac{1^{2}}{1+1^{3}}=\frac{1}{2}=0.5 \\
& =0.75+0.25 & & \frac{0.3956}{0.4571} \\
& =1 & \text { Simpson } \frac{1}{3} \text { Rd Rule }
\end{array}
$$

$$
\int_{0}^{1} y d y=\frac{h}{3}\left[\left(y_{0}+y_{4}\right)+4\left(y_{1}+y_{3}\right)+2 y_{2}\right]
$$

$$
=\frac{0.25}{3}[(0+0.5)+4[(0.0615)+0.3956]+2(0.2222)]
$$

$$
=\frac{0.25}{3}[0.5+4(0.4571)+2(0.2222)]
$$

$$
0.4 \times 44
$$

$$
=\frac{0.25}{3}[0.5+18284+0.4444]
$$

$$
9.8284
$$

$$
\frac{0.5}{2.7724}
$$

$$
=\frac{0.25}{3}[2.7724]
$$

$$
=0.231066
$$

16. Find an approximate value of $\log _{\mathrm{e}} 5$ by calculating

$$
=0.2311
$$ to four decimal places by simpson $\frac{1}{3}$ rd Rule. $\int_{0}^{5} \frac{1}{u x+5} d x d x$ dividing the range into 10 equal parts

Solus Given $\int_{0}^{5} \frac{1}{4 x+5} \quad a=0, b=5, \quad n=10, \quad h=\frac{b-9}{h}=\frac{5-0}{10}=\frac{1}{2}=0.5$

$$
\begin{array}{rlrl}
y & =x_{0}=0 & y_{0} & =\frac{1}{42_{0}+5} \\
x_{1} & =x_{0}+h & \\
& =0+0.5 & y_{0}=\frac{1}{u(0)+5} \\
& =0.5 & & y_{0}=\frac{1}{5} \\
& & =0.2 \\
& =0.5+0.5 & & y_{2}=\frac{1}{u x_{1}+5} \\
& =1.0 & & y_{1}=\frac{1}{u(0.5)+5}=\frac{1}{2+5}=\frac{1}{7}=0.1428
\end{array}
$$

$$
\begin{aligned}
& \begin{array}{rlrl}
x_{3} & =x_{2}+h & y_{2}=\frac{1}{4 x_{2}+5} \\
& =1.0+0.5
\end{array} \\
& =1.0+0.5 \\
& =1.5 \\
& =\frac{1}{u(1+5)+5}=\frac{1}{u+5}=\frac{1}{9}=0.1111 \\
& x_{4}=x_{3}+h \\
& =1.5+0.5 \\
& =2 \\
& y_{3}=\frac{1}{4 x_{3}+5}=\frac{1}{u(1.5)+5}=\frac{1}{b+5}=\frac{1}{11}=0.0909 \\
& y_{u}=\frac{1}{u x_{u}+5}=\frac{1}{u(2)+5}=\frac{1}{13}=0.0769 \\
& \begin{aligned}
x_{s} & =x_{u}+h \\
& =2+0.5
\end{aligned} \\
& y_{5}=\frac{1}{4 x_{5}+5}=\frac{1}{u(2.5)+5}=\frac{1}{10+5}=\frac{1}{15}=0.0667 \\
& =2.5 \\
& x_{6}=x_{5} \text { th } \\
& y_{6}=\frac{1}{u x_{6}+5}=\frac{1}{u(3.0)+5}=\frac{1}{17}=0.0588 \\
& =2.5+0.5 \\
& =3.0 \\
& x_{7}=x_{6}+h \\
& =3+0.5 \\
& =3.5 \\
& x_{8}=x_{7} \text { th } \\
& =3.5+0.5 \\
& =4.0 \\
& x_{9}=x_{8}+h \\
& =4.0+0.5 \\
& =4.5 \\
& x_{10}=x_{9}+h \\
& =4.5+0.5 \\
& =5 \\
& \text { Simpson } \frac{1}{3} \text { rd Rule }
\end{aligned}
$$

17. Evaluate $\int_{0}^{2} \frac{d x}{x^{2}+x+1}$ to three decimal dividing the range into eight equal parts.
:Sole) Given, $a=0, \quad b=2, \quad n=8 ; \quad h=\frac{b-a}{n}=\frac{2-0}{8}=\frac{2}{8}=0.25$

$$
\begin{aligned}
& y=f(x)=\frac{1}{x^{2}+x+1} \\
& x_{0}=a=0 \Rightarrow y_{0}=\frac{1}{x_{0}^{2}+x_{0}+1}=\frac{1}{0^{2}+0+1}=\frac{1}{1}=1
\end{aligned}
$$

$$
\begin{aligned}
& =0.25 \\
& \begin{aligned}
x_{2} & =x_{1}+h \\
& =0.25+0.25 \\
& =0.5
\end{aligned} \\
& y_{2}=\frac{1}{x_{2}^{2}+x_{2}+1}=\frac{1}{(0.5)^{2}+0.5+1}=\frac{1}{1.75}=0.5714 \\
& \begin{aligned}
x_{3} & =x_{2}+h \\
& =0.5+0.25 \\
& =0.75
\end{aligned} \\
& y_{3}=\frac{1}{x_{3}^{2}+x_{3}+1} \\
& =\frac{1}{(0.75)^{2}+0.75+1}=0.4324 \\
& \text { zero. } x_{u}=x_{3}+h \\
& =0.75+0.25 \\
& y_{4}=\frac{1}{x u^{2}+x u+1}=\frac{1}{1+1+1}=\frac{1}{3}=0.3333 \\
& =1 \\
& \text { No. } x_{5}=x_{4}+h \\
& y_{5}=\frac{1}{x 5^{2}+x_{5}+1}=\frac{1}{(1.25)^{2}+1.25+1}=0.24128 \\
& =1+0.25 \\
& =1.25 \\
& x_{6}=x_{5}+h \\
& y_{6}=\frac{1}{x_{6}^{2}+x_{6}+1}=\frac{1}{(1.5)^{2}+1.5+1}=0.2105 \\
& \int_{2}=1.25+0.25 \\
& =1.5 \\
& x_{7}=x_{6}+h \\
& =1.5+0.25 \\
& =1.75 \\
& x_{8}=x_{7}+h \\
& y_{7}=\frac{1}{x_{7}^{2}+x_{7}+1}=\frac{1}{(1.75)^{2}+1.75+1}=0.17204 \\
& y_{8}=\frac{1}{x_{8}^{12}+x_{8}+1}=\frac{1}{2^{2}+2+1}=\frac{1}{7}=0.14285 \\
& =1.75+0.25 \\
& =2
\end{aligned}
$$

Simpson $\frac{1}{3}^{\text {rd }}$ Rule

$$
\begin{aligned}
\int_{0}^{2} y d x & =\frac{h}{3}\left[\left(y_{0}+y_{8}\right)+4\left(y_{1}+y_{3}+y_{5}+y_{7}\right)+2\left(y_{2}+y_{4}+y_{6}\right)\right] \\
& =\frac{0.25}{3}[(1+0.1428)+4(0.7619+0.4324+0.2622+0.17204) \\
& +2(0.5714+0.3333+0.2105)] \\
& =\frac{0.25}{3}[1.1428+4(1.1149)+4(1.62854)] \\
& =\frac{0.25}{3}[1.1428+2.2298+6.51416] \\
& =\frac{0.25}{3}[9.88676]=\frac{2.47184}{3}
\end{aligned}
$$

18．Evaluate $\int_{0}^{6} \frac{x}{1+x^{5}}$ by using simpson $\frac{3}{8}$ ，Rule where $n=6$
solve

$$
=0.824
$$

solus）Given that $a=0, b=6, n=6 ; h=\frac{b-a}{n}=\frac{6-0}{6}=1$

$$
=6
$$

$$
\begin{aligned}
& y=f(x)=\frac{x}{1+x^{5}} \\
& x_{0}=a=0, \quad y_{0}=\frac{x_{0}}{1+x_{0} 5}=\frac{0}{1+0}=0 \\
& \begin{aligned}
x_{1} & =x_{0}+h \quad y_{1}=\frac{x_{1}}{1+x_{1}^{5}}=\frac{1}{1+1}=\frac{1}{2}=0.5 \\
& =0+1
\end{aligned} \\
& =1 \quad y_{2}=2=2=\frac{2}{33}=0.030130 .0606 \\
& x_{2}=x_{1}+h \quad y_{2}=\frac{2}{1+25}=\frac{2}{1+32}=\frac{2}{33}=0 \\
& 2 x_{2}=4 \\
& \text { 2メニンク } \\
& \begin{array}{r}
2=2 \\
32
\end{array} \\
& x_{u}=x_{3} \text { th } \\
& y_{u}=\frac{x_{4}}{1+2 u^{5}}=\frac{4}{1+45}=\frac{4}{1+102 u}=\frac{1}{1025}=0.0009756 \\
& =3+1 \\
& =4 \\
& x_{5}=x_{4}+h \\
& =u+1 \\
& y_{5}=\frac{x_{5}}{1+x_{5}^{5}}=\frac{5}{1+5^{5}}=\frac{5}{1+3125}=\frac{5}{3126}=0.00031989 \\
& =5 \\
& x_{6}=x_{5}+h \\
& y_{6}=\frac{x_{6}}{1+x_{6}{ }^{6}}=\frac{6}{1+6{ }^{6}}=\frac{b}{1+7776}=\frac{6}{7777}=0.00012888 \\
& =5+1
\end{aligned}
$$

Simpson $\frac{3}{8}$ Rule

$$
\begin{aligned}
& \int_{0}^{6} y d x=\frac{3 h}{8}\left[\left(y_{0}+y_{6}\right)+u\left(y_{1}+y_{8}+y_{6}\right)+2\left(y_{3}+y_{5}\right)\right] \\
& {\left[E=\frac{3(1)}{8}[(0+0.000128)+4(0.5+0.0040+0.000319)\right.} \\
& +2(0.0303+0.000975) \\
& =\frac{3}{8}[0.000128+4(0.504319)+2(0.031275)] \\
& =0.375[0.000128+2.017276+0.06255] \\
& =0.375[2 \cdot 0.79954] \\
& =0.77998] \\
& =\frac{3}{8}[0+0.0077]+3[0.5+0.0606+0.0039+0.0015 .70 .08 \text { 双 } 7 \\
& +2[0.0122] \\
& =\frac{3}{8}[0.0077+3(0.566)+0.0244] \\
& =\frac{3}{8}[0.0077+1.698+0.0244] \\
& =\frac{3}{8}[1.7301] \\
& =\frac{5.1903}{8}=0.6487875
\end{aligned}
$$

19. Evaluate $\int_{0}^{1} \frac{d x}{1+x}$ by using simpson $\frac{1}{3} r$ rd Rule where $h=0.2$ $\left.\begin{array}{lllllll}{\left[\begin{array}{llllll} & 0 & 0.2 & 0.4 & 0.6 & 0.8 \\ x_{1} & 0 & 1\end{array}\right] \text { and also find }} \\ x_{2} & x_{3}^{3} & x_{4} & x_{5}\end{array}\right]$ and $\log _{e}^{2}$
solus Given. that
$\int_{0}^{1} \frac{d x}{1+x}$
put $1+x=t$

$$
\begin{gathered}
d x=d t \\
x=0, t=1+x=1+0=1 \\
x=1, \quad t=1+x=1+1=2 \\
\int_{0}^{1} \frac{d x}{1+x}=\int_{1}^{2} \frac{d t}{t}
\end{gathered}
$$

$$
\begin{aligned}
= & {[\log t]_{1}^{2} } \\
& =\log _{e}^{2}-\log _{c}^{1} \\
& =\log _{e}^{2}-0 \\
\int_{0}^{2} \frac{d x}{1+x} & =\log _{e}^{2} \rightarrow 0
\end{aligned}
$$

By simpson $\frac{1}{3} r d$ Rule

$$
=0.658118
$$

$$
\begin{aligned}
& \int_{0}^{1} \frac{1}{1+x} d x=\frac{h}{3}\left[\left(y_{0}+y_{5}\right)+4\left(y_{1}+y_{3}\right)+2\left(y_{2}+y_{u}\right)\right] \\
& h=0.2 \\
& y=f(x)=\frac{1}{1+x} \\
& x_{0}=a=0 \\
& x_{1}=x_{0}+h \quad x_{2}=x_{1}+h \quad x_{3}=x_{2}+h \quad x_{4}=x_{3}+h \quad x_{5}=x_{4} \text { th } \\
& =0+0.2=0.2+0.2=0.4+0.2=0.6+0.2 \\
& =0.8 \\
& 0.8+0.2 \\
& =0.2=0.4 \\
& 20.6 \\
& y_{0}=\frac{1}{1+x_{0}}=\frac{1}{1+0}=\frac{1}{1}=1 \\
& y_{1}=\frac{1}{1+x_{1}}=\frac{1}{1+0.2}=\frac{1}{1.2}=0.8333^{\circ} \\
& y_{2}=\frac{1}{1+x_{2}}=\frac{1}{1+0.4}=\frac{1}{1 \cdot u}=0.71428 \\
& y_{3}=\frac{1}{1+x_{3}}=\frac{1}{1+0.6}=\frac{1}{1.6}=0.625 \\
& y_{u}=\frac{1}{1+x_{u}}=\frac{1}{1+0.8}=\frac{1}{1.8}=0.5555 \\
& y_{5}=\frac{1}{1+x_{5}}=\frac{1}{1+1}=\frac{1}{2}=0.5 \\
& =\frac{0.2}{3}[(1+0.5)+4(0.8333+0.625)+2(0.71428+0.5555)] \\
& =0.0666[1.5+4(1.4583)+2(1.26978)] \\
& =0.0666[1.5+5.8332+2.53958] \\
& =0.0666[9.87276]
\end{aligned}
$$

20. Evaluate $\int_{0}^{5} \frac{d x}{4 x+5}$ by using simpson $\frac{1}{3}$ rd Rule where $h=1$ and also find $\log _{e} 5$
Sole) $\int_{0}^{5} \frac{d x}{a x+5}$.
put $u x+5=t$

$$
\begin{aligned}
4 d x & =d t \\
d x & =\frac{d t}{4}
\end{aligned}
$$

Put t. $x=0 \quad t=u(0)+5=5$

$$
x=5 \quad t=u(5) 45=25
$$

$$
\begin{align*}
\int_{0}^{5} \frac{d x}{4 x+5}=\int_{5}^{25} \frac{d t}{4 t} & =\frac{1}{4} \int_{5}^{25} \frac{d t}{t} \\
& =\frac{1}{4}[\log t]_{\delta}^{25} \\
& =\frac{1}{4}\left[\log _{e} 25-\log _{e} 5\right] \\
& =\frac{1}{4}\left[2 \log _{e} 5-\log _{e} 5\right) \\
& =\frac{1}{4}[2-1] \log _{c} 5 \\
\therefore \int_{0}^{5} \frac{d x}{4 x+5} & =\frac{1}{4} \log _{e}^{5} \rightarrow(1) \tag{e}
\end{align*}
$$

$$
\begin{array}{rlrlrl}
f(x) & =\frac{1}{4 x+5} & a=0=x_{0} & \\
x_{1} & =x_{0}+h & x_{2} & =x_{1}+h & x_{3} & =x_{2}+h \\
& =0+1 & & =1+1 & & =2+1
\end{array}
$$

$$
y_{0}=\frac{1}{4 x_{0}+5}=\frac{1}{4(0)+5}=\frac{1}{5}=0.2
$$

$$
y_{1}=\frac{1}{4 x_{1}+5}=\frac{1}{4 u 1+5}=\frac{1}{9}=0.111
$$

$$
y_{2}=\frac{1}{u x_{2}+5}=\frac{1}{u(2)+5}=\frac{1}{13}=0.07692
$$

$$
\begin{aligned}
& y_{3}=\frac{1}{u x_{3}+5}=\frac{1}{u(3)+5}=\frac{1}{17}=0.05882 \\
& y_{1}=1=1=1=1=0.04761
\end{aligned}
$$

$$
y_{u}=\frac{1}{u x_{u}+5}=\frac{1}{u(u)+5}=\frac{1}{21}=0.04761
$$

$$
y_{5}=\frac{1}{4 x_{5}+5}=\frac{1}{u(5)+5}=\frac{1}{25}=0.04
$$

Simpson $\frac{1}{3}$ rd Rule

$$
\begin{align*}
& \text { Simpson } \frac{\frac{1}{3} r d \text { Rule }}{\int_{0}^{5} \frac{d x}{u x+5}}=\frac{\frac{h}{3}\left[\left(y_{0}+y_{5}\right)+4\left(y_{1}+y_{3}+2\left(y_{2}+y_{u}\right)\right]\right.}{}=\frac{1}{3}[(0.2+0.0 u)+4(0.1111+0.0588)+2(0.0769+0.047 \\
& \\
& =\frac{1}{3}[0.24+4(0.1699)+2(0.12 u 51)] \\
& \\
& =\frac{1}{3}[0.2 u+0.6796+0.24902] \\
& \tag{2}\\
& =0.3333[1.16862] \\
&
\end{align*}
$$

$$
\begin{aligned}
& =0.389501 \rightarrow(2) \\
\frac{1}{4} \log _{e} 5 & =0.389501 \quad[\text { from (1) } \xi(2)]
\end{aligned}
$$

$$
\log _{e} 5=4 \times 0.389501
$$

sate
Numerical Solution for the Ordinary differential Equations.

$$
=1.558004
$$

30718

Picards Method:.
Consider $\frac{d y}{d x}=f(x, y)$ then $y^{(2)}=y_{0}+\int_{x_{0}}^{x} f\left(x, y_{0}^{u}\right) d x$ is called third approximation $y(3)=y_{0}+\int_{x_{0}}^{x} f\left(x, y^{(2)}\right) d x$ called fourth approximation $y(u)=y_{0}+\int_{x_{0}}^{x} f\left(x, y^{(3)}\right) d x$ is called
1). Using picards method to find the value of y and $x=0.1$, 1) $x=0.2$ given $\frac{d y}{d x}=x-y$ if intial condation $y=1$ when $x=0$ Soles Given $\frac{d y}{d x}=x-y$ if initial condition $y=1$ when $x=0$ (dey) $f(x, y)=x-y$

Given
$y=1$, when $x=0 \Rightarrow x_{0}=0, y_{0}=1$
By picards method

$$
\begin{align*}
& y^{(u)}=y_{0}+\int_{x_{0}}^{x} f\left(x_{0}, y_{0}\right) d x \\
& f\left(x, y_{0}\right)=x-y_{0} \\
& =x-1, x_{0}=0 \\
& y(1)=1+\int_{0}^{x}(x-1) d x \\
& =1+\left[\frac{x^{2}}{2}-x\right]_{0}^{x} \\
& =1+\frac{x^{2}}{2}-x \\
& y(1)=1-x+\frac{x^{2}}{2} \tag{2}\\
& y(2)=y_{0}+\int_{x_{0}}^{x} f\left(x, y^{(1)}\right) d x \\
& f\left(x, y^{(a)}\right)=x-y^{(1)} \\
& =0-\left(1-x+\frac{x^{2}}{2}\right) \\
& \begin{aligned}
\text { nirok } & =x-1+x-\frac{x^{2}}{2} \\
& =2 x-1-\frac{x^{2}}{2} \\
y^{(2)} & =1+\int_{0}^{x}\left(-1+2 x-\frac{x^{2}}{2}\right) d x \\
& =1+\left[-x+\frac{4 x^{2}}{x}-\frac{p}{2} \frac{x^{3}}{3}\right]_{0}^{x}
\end{aligned} \\
& \begin{aligned}
\text { nirok } & =x-1+x-\frac{x^{2}}{2} \\
& =2 x-1-\frac{x^{2}}{2} \\
y^{(2)} & =1+\int_{0}^{x}\left(-1+2 x-\frac{x^{2}}{2}\right) d x \\
& =1+\left[-x+\frac{4 x^{2}}{x}-\frac{p}{2} \frac{x^{3}}{3}\right]_{0}^{x}
\end{aligned} \\
& \begin{aligned}
\text { nirok } & =x-1+x-\frac{x^{2}}{2} \\
& =2 x-1-\frac{x^{2}}{2} \\
y^{(2)} & =1+\int_{0}^{x}\left(-1+2 x-\frac{x^{2}}{2}\right) d x \\
& =1+\left[-x+\frac{4 x^{2}}{x}-\frac{p}{2} \frac{x^{3}}{3}\right]_{0}^{x}
\end{aligned} \\
& \begin{aligned}
\text { Tirok } & =x-1+x-\frac{x^{2}}{2} \\
& =2 x-1-\frac{x^{2}}{2} \\
y^{(2)}= & 1+\int_{0}^{x}\left(-1+2 x-\frac{x^{2}}{2}\right) d x \\
= & 1+\left[-x+\frac{+x^{2}}{x}-\frac{1}{2} \frac{x^{3}}{3}\right]_{0}^{x}
\end{aligned} \\
& y^{(2)}=1-x+x^{2}-\frac{x^{3}}{6} \rightarrow(3) \tag{3}\\
& y(3)=y_{0}+\int_{x_{0}}^{x} f(x, y(2)) d x \\
& f\left(x, y^{(2)}\right)^{x_{0}}=x-y^{(2)} \\
& =x-\left(1-x+x^{2}-\frac{x^{3}}{36}\right) \\
& =x-1+x-x^{2}+\frac{x^{36}}{2}
\end{align*}
$$

$$
\begin{aligned}
&=-1+2 x-x^{2}+\frac{x^{3}}{6} \\
& y(3)=-1+2 x-x^{2}+\frac{x^{3}}{6} \rightarrow y^{(3)} \\
&= 1+\int_{0}^{x}\left(-1+2 x-x^{2}+\frac{x^{3}}{6}\right) d x \\
&=1+\left[-x+\frac{2 x^{2}}{2}-\frac{x^{3}}{3}+\frac{x^{4}}{6}\right]_{0}^{x} \\
& y^{(3)}=1-x+x^{2}-\frac{x^{3}}{3}+\frac{x^{4}}{24} \\
& y^{(4)}=y_{0}+\int_{x 0}^{x} f\left(x, y^{(3)}\right) d x \\
& f(x, y(3))=x-\left(1-x+x^{2}-\frac{x^{3}}{3}+\frac{x^{4}}{24}\right)^{x} \\
&=x-1+x-x^{2}+\frac{x^{3}}{3}-\frac{x^{y}}{24} \\
&=2 x-x^{2}-1+\frac{x^{3}}{3}-\frac{x^{4}}{24} \\
& y(3)=1+\int_{0}^{x}\left(2 x-x^{2}-1+\frac{x^{3}}{3}-\frac{x^{4}}{24}\right) d x \\
&=1+\left[\frac{2 x^{2}}{2}-\frac{x^{3}}{3}+x+\frac{x^{4}}{4 \cdot 3}-\frac{x^{5}}{5 \times 24}\right]_{0}^{x} \\
& y(4)=1+x^{2}-\frac{x^{3}}{3}+\frac{x}{12}+\frac{x^{4}}{12}-\frac{x^{5}}{120} \\
& y=1-x+x^{2}-\frac{x^{3}}{3}-x+\frac{x^{4}}{12}-\frac{x^{5}}{120}
\end{aligned}
$$

at $x=0.1$

$$
\begin{aligned}
& x=0.1 \\
& y=1-0.1+(0.1)^{2}-\frac{(0.1)^{3}}{3}+\frac{(0.1) y}{12}-\frac{(0.1)^{5}}{120} \\
&=+0.9+0.01-\frac{0.001}{3}+\frac{0.000}{12}-\frac{0.00001}{120} \\
&=0.91-0.9096+-0.000333+0.00000083-0.0000000833 \frac{0.1}{0.1} \\
& 0.1 \\
& 0.1 \\
&=0.90967522
\end{aligned}
$$

$$
y(0.1)=0.9097
$$

at $x=0.2$

$$
\begin{aligned}
& \text { at } x=0.2 \\
& y=1-0.2+(0.2)^{2}-\frac{(0.2)^{3}}{3}+\frac{(0.2)^{4}}{12}-\frac{(0.2)^{5}}{120} \\
&=0.8+0.04-\frac{0.008}{3}+\frac{0.00016}{12}-\frac{0.00039}{120} \\
& y(0.2)=0.84-0.0026667+0.0001333-0.000002667 \\
&=0.8375
\end{aligned}
$$

2. If $\frac{d y}{d x}=\frac{y-x}{y+x}$, find the value of y and $x=0.1$ using picards method given that $y(0)=1$
solus Given that

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{y-x}{y+x} \\
f(x, y) & =\frac{y-x}{y+x}
\end{aligned}
$$

Given $y(0)=1 \Rightarrow x_{0}=0, y_{0}=1$
By pilards method

$$
\begin{aligned}
& 1-x \\
& -1=d t \\
& -d x=d t
\end{aligned}
$$

$$
\begin{aligned}
& y(1)=y_{0}+\int_{x_{0}}^{x} f\left(x, y_{0}\right) d x \\
& f\left(x, y_{0}\right)=\frac{y_{0}-x}{y_{0}+x}=\frac{1-x}{1+x} \\
& y(1)=1+\int_{0}^{x}\left[\frac{1-x}{1+x}\right] d x \\
& E 1+\left[\frac{(1+x)(-1)-(1-x)(1)}{1+(1+x)^{2}}\right]_{0}^{x}=1+1 \\
& 1-x=k \\
& \begin{array}{l}
=1+\left[\frac{-1-x}{(1+x)^{2}}\right. \\
=1+[-2]
\end{array} \\
& \text { put } 1+x=t \\
& =1+\int_{q}^{1+2} \frac{1-(t-1)}{t} d t \\
& x=x, \quad t=1+x \\
& =1+\int_{1}^{1+x} \frac{x-t+t}{t} d t \\
& =1+2 \int_{1}^{\frac{2-t}{t}} d t \\
& =1+\int_{1}^{1+x}\left[\frac{2}{t}-1\right] d t \\
& =1+[2 \log t-f]_{q}^{1+x} \\
& =1+[2 \log (1+x)-(1+x)]-[2 \log (1)-1] \\
& =1+[2 \log (1+x)-(1+x)]+1
\end{aligned}
$$

$$
\begin{aligned}
& =1+2 \log (1+x)-x-x \\
y(1) & =1-x+2 \log (1+x) \\
y(2) & =y_{0}+\int_{x 0}^{x} f\left(x, y^{(1)}\right) d x \\
f^{\prime}\left(x, y^{(1)}\right) & =\frac{y^{(1)}-x}{y^{(1)}+x} \\
& =\frac{1-x+2 \log (1+x)-x}{1-x+2 \log (1+x)+x} \\
& =\frac{1-2 x+2 \log (1+x)}{1+2 \log (1+x)} \\
y(2) & =1+\int_{0}^{x} \frac{1-2 x+2 \log (1+x)}{1+2 \log (1+x)} d x
\end{aligned}
$$

It is not defined
The solution of the given differential Equation is

$$
y=1-x+2 \log (1+x)
$$

put $x=0.1$

$$
\begin{aligned}
& y=1-(0.1)+2 \log (1+0.1) \\
& y=0.9+2 \log (1.1) \\
& y=0.9+2(0.0953) \\
& y=0.9+0.19062=0.9906
\end{aligned}
$$ $(0,0.05)$ correct to three decimal places taking $h=0.1$ plus Given $\frac{d y}{d x}=1+x y \Rightarrow f(x, y)=1+x y \rightarrow(1)$

$$
y(0)=1, \quad x_{0}=0, \quad y_{0}=1, h=0.1
$$

By picards method

$$
\begin{aligned}
\text { By picards } \\
\begin{aligned}
y^{(1)}=y_{0} & +\int_{x_{0}}^{x} f\left(x, y_{0}^{0}\right) d x \\
f\left(x, y^{0}\right) & =1+x \cdot y_{0}^{1}, y_{0}=1 \\
& =1+x \\
y^{(1)} & =1+\int_{0}^{x}(1+x) d x
\end{aligned}
\end{aligned}
$$

$$
\begin{align*}
& =1+\left[x+\frac{x^{2}}{2}\right]_{0}^{1} \\
& =1+\left[x+\frac{x^{2}}{2}\right] \\
& y(1)=1+x+\frac{x^{2}}{2} \\
& y(2)=y_{0}+\int_{x 0}^{x} f(x, y(1)) d x \\
& f\left(x, y^{(1)}\right)=1+x y(1) \\
& =1+x\left[1+x+\frac{x^{2}}{2}\right] \\
& =1+x+x^{2}+\frac{x^{3}}{2} \\
& \begin{aligned}
y(2) & =1+\int_{0}^{2}\left[1+x+x^{2}+\frac{x^{3}}{2}\right] d x
\end{aligned} \\
& =1+\left[x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\frac{x^{4}}{8}\right]_{0}^{x} \\
& y(2)=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\frac{x y}{8} \tag{3}\\
& y^{(3)}=y_{0}+\int_{x_{0}}^{x} f(x, y(2)) d x \\
& f(x, y(2))=1+x y(2) 1+x\left[1+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\frac{x^{y}}{8}\right] \\
& =1+x+x^{2}+\frac{x^{3}}{2}+\frac{x^{4}}{3}+\frac{x^{5}}{8} \\
& y(3)=1+\int_{0}^{x}\left[1+x+x^{2}+\frac{x^{3}}{2}+\frac{x^{4}}{3}+\frac{x^{5}}{8}\right] d x \\
& =1+\left[x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\frac{x^{4}}{2 \times 4}+\frac{x^{5}}{3 \times 5}+\frac{x^{6}}{6 \times 8}\right] \\
& y(3)=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\frac{x^{y}}{8}+\frac{x^{5}}{15}+\frac{x^{6}}{48} \\
& y(u)=y_{0}+\int_{x_{0}}^{x} f(x, y(3)) d x
\end{align*}
$$

not defined

$$
\begin{aligned}
\therefore y & =1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\frac{x y}{8}+\frac{x^{5}}{15}+\frac{x^{6}}{48} \\
x_{1} & =x_{0}+h \quad y(0.1)=1+0.1+\frac{(0.1)^{2}}{2}+\frac{(0.7)^{3}}{3}+\frac{(0.1)^{4}}{8} \\
& =0+0.1 \quad+\frac{(0.1) 5}{15}+\frac{(0.1)^{6}}{48} \\
& =0.1 \quad
\end{aligned}
$$

$$
\begin{aligned}
& y(0.1)=1+0.1+\frac{0.01}{2}+\frac{0.001}{3}+\frac{0.0001}{8}+\frac{0.00001}{15}+\frac{0.000001}{48} \\
& =1.1+0.005+0.00033+0.000025+0.00000067 \\
& +0.000000021 \\
& y(0.1)=1.105343191 \\
& y(0.1)=1.105 \\
& x_{2}=x_{1}+h \quad y(0.2)=1+0.2+\frac{(0.2)^{2}}{2}+\frac{(0.2)^{3}}{3}+\frac{(0.2)^{4}}{8}+\frac{(0.2)^{5}}{15}+\frac{(0.2)^{6}}{48} \\
& =0.1+0.1 \\
& =0.2 \\
& y(0.2)=1.2+\frac{0.0 y}{2}+\frac{0.008}{3}+\frac{0.0016}{8}+\frac{0.00032}{15}+\frac{0.0000064}{48} \\
& =1.2+0.02+0.00267+0.0002+0.0000213+.0 .00000 \\
& =1.22289263 \\
& =1.223 \\
& \begin{aligned}
& =1.223 \\
x_{3} & =x_{2} \text { th } \quad y(0.3)=1+0.3+\frac{(0.3)^{2}}{2}+\frac{(0.3)^{3}}{3}+\frac{(0.3) 4}{8}+\frac{(0.3)^{5}}{15}+\frac{(0.3)^{6}}{48} \\
& =0.2+0.1
\end{aligned} \\
& y_{63}=1.3+\frac{0.03}{2}+\frac{0.027}{3}+\frac{0.0081}{8}+\frac{0.00243}{15}+\frac{0.000729}{48} \\
& =1.3+0.015+0.009+0.00101+0.000162+0.000 .0151 \\
& =1.3551871 \\
& y(0.3)=1.355 \\
& \begin{aligned}
x_{4} & =x_{3} \text { th } \quad y(0.4)=1+0.4+\frac{(0.4)^{2}}{2}+\frac{(0.4)^{3}}{3}+\frac{(0.4)^{4}}{8}+\frac{(0.4)^{5}}{15}+\frac{(0.3)^{6}}{48} \\
& =0.3+0.1
\end{aligned} \\
& =0.4 \\
& \begin{aligned}
& =0.370 .1 \\
& =0.4 \\
y(0 . u) & =1+0.4+\frac{0.96}{2}+\frac{0.064}{3}+\frac{0.0256}{8}+\frac{0.01024}{15}+\frac{0.004096}{48} \\
& =1.4+0.08+0.02133+0.0032+0.0006826+0.00008 \\
& =1.505265
\end{aligned} \\
& =1.505265 \\
& y(0 . u)=1.505
\end{aligned}
$$

$$
\begin{aligned}
x_{5} & =x_{u} \text { th } y(0.5)=1+0.5+\frac{(0.5)^{2}}{2}+\frac{(0.5)^{3}}{3}+\frac{(0.5)^{4}}{8}+\frac{(0.5)}{15}+\frac{(0.5)^{6}}{48} \\
& =0.4+1 \\
& =0.5 \\
y(0.5) & =1.5+\frac{0.25}{2}+\frac{0.125}{3}+\frac{0.0625}{8}+\frac{0.03125}{15}+\frac{0.015625}{48} \\
& =1.5+0.125+0.04167+0.0078125+0.0020833+0.00032 \\
& =1.6798155
\end{aligned}
$$

4. For the ditterential Equation $\frac{d y}{d x}=x-y^{2}, y(0)=0$ calculate

$$
y(0.5)=1.68
$$ $y(0.2)$ by using picards method to third approximation solus and round of the value into four decimal places

Given $\frac{d y}{d x}=x-y^{2}$

$$
\begin{gather*}
f(x, y)=x-y^{2} \rightarrow(1) \tag{1}\\
y(0)=0, \quad x_{0}=0, \quad y_{0}=0
\end{gather*}
$$

By picards method

$$
\begin{align*}
& y^{(i)}=y_{0}+\int_{x 0}^{x} f\left(x, y_{0}\right) d x \\
& f\left(x, y_{0}\right)=x-y_{0}{ }^{2} \\
& =x-0 \\
& =x \\
& y(i)=0+\int_{0}^{x} x d x \\
& y(1)=\left[\frac{x^{2}}{2}\right]_{0}^{x}=\frac{x^{2}}{2} \tag{2}\\
& y(2)=y_{0}+\int_{x^{0}}^{x} f(x, y(1)) d x \\
& f(x, y(1))=x-y_{1}^{2} \\
& =x-\left(\frac{x^{2}}{2}\right)^{2} \\
& =x-\frac{x y}{4} \\
& y(2)=\operatorname{ot} \int_{0}^{x}\left[x-\frac{x y}{4}\right] d x \\
& y(2)=\frac{x^{2}}{3}-\frac{x^{5}}{30}
\end{align*}
$$

$$
\begin{align*}
& y(3)=y_{0}+\int_{x_{0}}^{x} f(x, y(2)) d x \\
& f(x, y(z))=x-(y(2))^{2} \\
& =x-\left[\frac{x^{2}}{2}-\frac{25}{20}\right]^{2} \\
& =x-\left[\frac{x^{4}}{4}+\frac{x^{10}}{400}-\frac{7 x^{7}}{40}\right] \\
& =x-\frac{x^{4}}{4}-\frac{x^{10}}{400}+\frac{x^{7}}{20} \\
& y(3)=0+\int_{0}^{x}\left[x-\frac{x y}{4}-\frac{x^{10}}{400}+\frac{x^{7}}{20}\right] \\
& y(3)=\left[\frac{x^{2}}{2}-\frac{x^{5}}{20}-\frac{x^{11}}{4400}+\frac{x^{8}}{160}\right] \text {. } \\
& y=\frac{x^{2}}{2}-\frac{x^{5}}{20}-\frac{x^{11}}{4400}+\frac{x^{8}}{160} \\
& y(0.2)=\frac{(0.2)^{2}}{2}-\frac{(0.2)^{5}}{20}-\frac{(0.2)^{\prime \prime}}{4400}+\frac{(0.2)^{8}}{160} \\
& =\frac{0.04}{2}-\frac{0.00032}{20}-\frac{0.000000020484}{4400}+\frac{0.000 .00256}{160} \\
& =0.02-0.000016-0.000000000004654 \\
& +0.000000016 \\
& =0.0199 .84016 \text {. }
\end{align*}
$$

5. find an approximate value of y when $x=0.1$, if $\frac{d y}{d x}=x-y$ $+\cdots$ and $y=1$, at $x=0$ using picards method unto three two approximations
saul Given that

$$
\begin{aligned}
& \text { that } \\
& \left.\qquad \begin{array}{l}
\frac{d y}{d x} \\
=x-y^{2} \\
f(x, y)
\end{array}\right)=x-y^{2} \rightarrow \text { (1) } \\
& y=1, \quad x=0, \quad y_{0}=1
\end{aligned}
$$

By picords method

$$
\begin{aligned}
y^{(1)} & =y_{0}+\int_{x_{0}}^{x} f\left(x, y_{0}\right) d x \\
f\left(x, y_{0}\right) & =x-y_{0}^{2} \\
& =-1^{2}
\end{aligned}
$$

$$
\begin{align*}
& =x-1 \\
& y^{(1)}=9+\int_{0}^{x}(x-1) d x \\
& y(1)=1+\left[\frac{x^{2}}{2}-x\right] \tag{2}\\
& y(2)=y_{0}+\int_{x^{0}}^{x} f\left(x, y^{(1)}\right) d x \\
& f(x, y(1))=x-y_{1}{ }^{2} \\
& =x-\left[1+\frac{x^{2}}{2}-x\right]^{2} \\
& \left.=x-1-\frac{x^{2}}{2}+x\right]=x-\left[1+\frac{x^{4}}{4}-x^{2}\right. \\
& -2 x-1-\frac{x^{2}}{2} \\
& +\frac{2 x^{2}}{2}-\frac{2 x^{2}}{2} x-2 x^{2} \\
& \begin{aligned}
y(2) & =1+\int_{0}^{x}\left[2 x-1-\frac{x^{2}}{2}\right] \\
& =1+\frac{2 x^{2}}{2}-x-\frac{x^{3}}{6}
\end{aligned} \\
& y(2)=1+x^{2}-x-\frac{x^{3}}{6} \\
& y=1-x+x^{2}-\frac{x^{3}}{6} \\
& y(0.1)=1-0.1+(0.1)^{2}-\frac{(0.1)^{3}}{6} \\
& =1-0.1+0.01-\frac{0.001}{6} \\
& =1-0.1+0.01-1,00016 \\
& =-0.09016 \\
& =0.2+0.02+0.00013 \\
& =0.22013 \\
& y(0 . u)=0.4+\frac{(0.4)^{2}}{2}+\frac{(0.4)^{4}}{12} \\
& =0.4+\frac{0.16}{2}+\frac{0.0256}{12} \\
& =0.4+0.08+0.00213= \\
& =0.48213) \\
& y(0.1)=1+\frac{(0.1)^{2}}{2}-0.1-\frac{2}{3} / 0 . \\
& t(0.1)^{2}-\frac{(0.1)}{20}+\frac{(0.1)}{4} \\
& =1+\frac{0.01}{2}-0.1-\frac{2}{3}(0.0 x \\
& +0.01-\frac{0.00001}{20} \\
& +0.0001 \\
& x=0.9101+0.0005 \\
& =0.9099328-(0.6667)(0.001)
\end{align*}
$$

b)
7. R-k method of $4^{\text {th }}$ order
consider

$$
\begin{aligned}
& \frac{d y}{d x}=f\left(x_{1} y\right) \\
& y_{1}=y_{0}+k \\
& k=\frac{1}{6}\left[k_{1}+2 k_{2}+2 k_{3}+k_{4}\right] \\
& k_{1}=h \cdot f\left(x_{0}, y_{0}\right) \\
& k_{2}=h \cdot f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{1}}{2}\right) \\
& k_{3}=h \cdot f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{2}}{2}\right) \\
& k_{u}=h \cdot f\left(x_{0}+h, y_{0}+k_{3}\right)
\end{aligned}
$$

Similarly

$$
\begin{aligned}
& y_{2}=y_{1}+k \\
& k=\frac{1}{6}\left[k_{1}+2 k_{2}+2 k_{3}+k_{u}\right] \\
& k_{1}=h \cdot f\left(x_{1}, y_{1}\right) \\
& k_{2}=h \cdot f\left(x_{1}+\frac{h}{2}, y_{1}+\frac{k}{2}\right) \\
& k_{3}=h \cdot f\left(x_{1}+\frac{h}{2}, y_{1}+\frac{k_{2}}{2}\right) \\
& k_{u}=h \cdot f\left(x_{1}+h_{1}, y_{1}+k_{3}\right) .
\end{aligned}
$$

1. use R-k method of $u^{\text {th }}$ order. find the value of y at $x=0.1$ given $\frac{d y}{d x}=\frac{y-x}{y+x}, \quad y(0)=1$,
Solus) Given

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{y-x}{y+x} \\
& \Rightarrow f(x, y)=\frac{y-x}{y+x} \\
& y(0)=1 \Rightarrow x_{0}=0 ; \quad y_{0}=1 ; \quad \mid x=0.1 \\
& k_{1}=h \cdot f\left(x_{0}, y_{0}\right) \\
& =h \cdot f(0,1) \\
& =0.1 \frac{1-0}{1+0} \\
& =0.1 \times 1=0.1 \\
& k_{1}=0.1 \\
& k_{2}=h \cdot f \cdot\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{1}}{2}\right) \\
& =h \cdot f\left(o+\frac{0.1}{2}, 1+\frac{0.1}{2}\right) \\
& =h f\left(\frac{0.1}{2}, \frac{2.1}{2}\right) \\
& =0.1 f(0.05,1.05) \\
& =0.1\left[\frac{1.05-0.05}{1.05+0.05}\right] \\
& =0.1 \times \frac{1}{1.1} \\
& k_{2}=0.0909 \\
& k_{3}=h \cdot f \cdot\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{2}}{2}\right) \\
& =h \cdot f\left(0+\frac{0.1}{2}, 1+\frac{0.0909}{2}\right) \\
& =h \cdot f(0.05,1+0.04545) \\
& =h \cdot f(0.05,1.04545) \\
& =\theta .1\left[\frac{1.04545-0.05}{1.04545+0.05}\right] \\
& =0.1 \times \frac{0.99545}{1.09545}
\end{aligned}
$$

$$
\begin{aligned}
& =0.09087133 \\
k_{u} & =h . f\left(x_{0}+h, y_{0}+k_{3}\right) \\
= & h . f(0+0.1,1+0.0909) \\
= & h . f(0.1,1.0909) \\
& =0.1\left[\frac{1.0909-0.1}{1.0909+0.1}\right] \\
& =0.1 \times \frac{0.9909}{1.1909} \\
k & =\frac{0.0832}{6} \\
= & \frac{1}{6}\left[k_{1}+2 k_{2}+2 k_{3}+k u\right] \\
& =\frac{1}{6}[0.1+2(0.0909)+2(0.0909)+0.1818+0.1818+0.0832] \\
& =\frac{0.5 u 68}{6} \\
k & =0.09113 \\
k & =0.0911
\end{aligned}
$$

2.

$$
\begin{aligned}
y_{1} & =y_{0}+k \\
& =1+0.0911 \\
y_{1} & =1.0911, \quad x_{1}=0.1
\end{aligned}
$$

2. Use R.K. method of $4^{\text {th }}$ order to find the value of y ah $x=0.1$, given $y^{\prime}=x y+1, y(0)=1$
solus

$$
\begin{align*}
\text { Given } & \frac{d y}{d x}=x y+1=y \\
& f(x, y)=x y+1 \rightarrow(1) \tag{1}\\
y(0) & =1, x_{0}=0, y_{0}=1, h=0,1 \\
k_{1}= & h \cdot f\left(x_{0}, y_{0}\right) \\
= & h f(0,1) \\
= & h[0(1)+1]
\end{align*}
$$

$$
\begin{aligned}
& =0.1 \times 1 \\
& k_{1}=0.1 \\
& k_{2}=b \cdot f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{1}}{2}\right) \\
& =h f\left(0+\frac{0.1}{2}, q+\frac{0.1}{2}\right) \\
& =h f(0.05,1+0.05) \\
& =h f(0.05,1.05) \\
& =0.1[(0.05)(1.05)+1] \\
& =0.1[1.0525] \\
& k_{2}=0.10525 \\
& k_{2}=0.1053 \\
& k_{3}=h f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{2}}{2}\right) \\
& =h F\left(0+\frac{0.1}{2}, 1+\frac{0.10523}{2}\right) \\
& =h f(0.05,1+0.05265) \\
& =h F(0.05, r .05265) \\
& =0.1[(0.05)(1.05265)+1] \\
& =0.1[1.0526325] \\
& k_{3}=0.10526325=0.1053 \\
& k_{u}=h f\left(x_{0}+h, x_{0}+k_{3}\right) \\
& =h f(0+0.1,1+0.1053) \\
& =h f(0.1,1.1053) \\
& =h[(0.1)(1.1053)+1] \\
& =0.1[1.11053] \\
& =0.11105^{3} \\
& k_{4}=0.1111 \\
& k=\frac{1}{6}\left[k_{1}+2 k_{2}+2 k_{3}+k_{4}\right] \\
& =\frac{1}{6}[0.1+2(0.10525)+2(0.1053)+0.1111]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{6}[0.1+0.2106+0.2106+0.1111] \\
& =\frac{0.6323}{6} \\
& =0.10538 \\
k & =0.1054 \\
y_{1} & =y_{0}+k \\
& =1+0.1054
\end{aligned}
$$

pate $\quad y^{\prime}=1.1054 ; x_{1}=0.1$
2lgl18 using R.K method of $u^{\text {th }}$ order find y when $x=0.1$
3. and 0.2 , Given that $x=0$, when $y=1$ and $\frac{d y}{d x}=x+y$

Solus Given

$$
\begin{align*}
& \frac{d y}{d x}=x+y \\
& f(x, y)=x+y \rightarrow 0 \\
& x=0, y=1, \quad x_{0}=0, \quad y_{0}=1, \quad h=0.1
\end{align*}
$$

Case (i)

$$
\begin{aligned}
x_{1} & =h \cdot f\left(x_{0}, y_{0}\right) \\
& =0.1+0.1 \\
& =0.2 \\
k_{1} & =h \cdot f(0,1) \\
& =h \cdot k(0+1] \\
k_{1} & =0.1 \\
k_{2} & =h \cdot f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{1}}{2}\right) \\
& =h \cdot f\left(0+\frac{0.1}{2}, 1+\frac{0.1}{2}\right) \\
& =h . f(0.05,1+0.05) \\
& =h . f(0.05,1.05) \\
& =0.1[0.05+1.05] \\
& =0.1[1.1] \\
k_{2} & =0.11
\end{aligned}
$$

$$
\begin{aligned}
& k_{3}=h \cdot F\left(x_{0}+\frac{h}{2}, \quad y_{0}+\frac{k_{2}}{2}\right) \\
& =h \cdot f\left(0+\frac{0.1}{2}, 1+\frac{0.11}{2}\right) \\
& =h \cdot f(0.05,1+0.055) \\
& =h \cdot f(0.05,1.055) \\
& =0.1[0.05+1.055] \\
& =0.1[1.105] \\
& k_{3}=0.1105 \\
& k_{u}=h \cdot f\left(x_{0}+h, y_{0}+k_{3}\right) \\
& =h . f(0+0.1,1+0.1105) \\
& =h \cdot f(0.1,1.1105) \\
& =0.1[0.1+1.1105] \\
& =0.1[1.2105] \\
& k_{u}=0.12105=0.1211 \\
& k=\frac{1}{6}\left[k_{1}+2 k_{2}+2 k_{3}+k_{4}\right] \\
& =\frac{1}{6}[0.1+2(0.11)+2(0.1105)+0.12105] \\
& =\frac{1}{6}\left[0.1+0.22+0.221+0.1219^{8}\right] \\
& =\frac{1}{6}[0.6621] \\
& =0.0736833^{0.11035} \\
& k=0.1104 \\
& y_{1}=y_{0}+k \\
& =1+0.1104 \\
& =1.1104 \quad x_{1}=0.1
\end{aligned}
$$

Case (iii)

$$
\begin{aligned}
x_{2} & =x_{1}+h \\
& =0.1+0.1 \\
& =0.2
\end{aligned}
$$

$$
\begin{aligned}
& k_{1}=h \cdot f\left(x_{\underline{q}}, y_{\underline{q}}\right) \\
& =h \cdot f(0.1,1.1104) \\
& =h[0.1+1.110 u] \\
& =h[1.2104] \\
& =0.1 \times 1.2104 \\
& k_{1}=0.12104=0.121 \\
& k_{2}=h_{1} f\left(x_{1}+\frac{h}{2}, y_{1}+\frac{k_{1}}{2}\right) \\
& =h \cdot F\left(0.1+\frac{0.1}{2}, 1 \cdot 10 u+\frac{0.1217}{2}\right) \\
& =h . f(0.1+0.05,1.1104+0.0605) \\
& =h \cdot F(0.15,1.1709) \\
& =0.1[0.15+1.1709] \\
& =0.1[1.3209] \\
& =0.13209 \\
& k_{2}=0.1321 \\
& k_{3}=h \cdot f\left(x_{1}+\frac{h}{2}, y_{1}+\frac{k_{2}}{h}\right) \\
& =h \cdot f\left(0.1+\frac{0.1}{2}, 1 \cdot 110 u+\frac{0.1321}{\sqrt{2}}\right) \\
& =h \cdot f(0.1+0.05,1.1104+0.06605) \\
& =h \cdot f(0.15,1.17645) \\
& =0.1[0.15+1.17645) \\
& =0.1[1.32645] \\
& k_{3}=0.132645=0.1327 \\
& k_{4}=h \cdot f\left(x_{1}+h, y_{1}+k_{3}\right) \\
& =h . f(0.1+0.1,1.11044+0.1327) \\
& =h \cdot f(0.2, j .2431) \\
& =0.1[0.2,+1.2431] \\
& =0.1[\text { r.un3 } 1]
\end{aligned}
$$

$$
\begin{aligned}
& =0.14431 \\
k & =0.1443 \\
k= & \frac{1}{6}\left[k_{1}+2 k_{2}+2 k_{3}+k 4\right] \\
= & \frac{1}{6}[0.121+2(0.1321)+2(0.1327)+0.1443] \\
= & \frac{1}{6}[0.121+0.2642+0.2654+0.1443] \\
= & \frac{1}{6}[0.7949] \\
= & 0.132483 \\
& k=0.13249 \\
y_{2}= & y_{1}+k \\
= & 1.1104+0.13249 \\
= & 1.24289
\end{aligned}
$$

4. Use R-k method of $4^{\text {th }}$ order to find y when $x=1.2$. given

$$
y_{2}=1.2429
$$

$$
\frac{d y}{d x}=x^{2}+y^{2}, y(1)=1.5
$$

solus] Given that

$$
\begin{aligned}
& \frac{d y}{d x}=x^{2}+y^{2} \\
& f\left(x_{0}, y_{0}\right)=x^{2}+y^{2} \rightarrow 0 \\
& y(1)=1.5, \quad x_{0}=1, \quad y_{0}=1.5, h=0.1
\end{aligned}
$$

Case (i)

$$
\begin{aligned}
x_{1} & =x_{0}+h \\
& =1+0.1 \\
& =1.1 \\
k_{1} & =h . f\left(x_{0}, y_{0}\right) \\
& =h . f\{1.1 .5) \\
& =h \cdot\left[1+(1.5)^{2}\right] \\
& =0.1[1+2.25] \\
& =0.1[3.25] \\
k_{1} & =0.325
\end{aligned}
$$

$$
\begin{aligned}
& k_{2}=h-f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{1}}{2}\right) \\
& =h_{1} f\left(01+\frac{0.1}{2}, 1.5+\frac{0.325}{2}\right) \\
& =h \cdot F(1+0.05,1.5+0.1625) \\
& =\hbar . F(1.05,1.6625) \\
& =0.1\left[(1.05)^{2}+(1.6625)^{2}\right] \\
& =0.1[1.1025+2.76 .390] \\
& =0.1[3.8664] \\
& =0.38664 \\
& k_{2}=0.3866 \\
& k_{3}=h \cdot f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{2}}{2}\right) \\
& =h \cdot F\left(1+\frac{0.1}{2}, 1.5+\frac{0.3866}{2}\right) \\
& =h . f(1+0.05, \quad 1.5+0.1933) \\
& =h \cdot F(1.05,1.6933) \\
& =0.1\left[(1.05)^{2}+(1.0933)^{7}\right] \\
& =0.1[1.1025+2.8673] \\
& =0.1[3.9698] \\
& =0.39698 \\
& K_{3}=0.397 \\
& k_{4}=h \cdot f \cdot\left(x_{0}+h, y_{0}+k_{3}\right) \\
& =h \cdot f(1+0.1,1.5 t 0.397) \\
& =h \cdot f(1.1,1.897) \\
& =0.1\left[(1.1)^{2}+(1.89 .7)^{2}\right] \\
& =0.1[1.21+3.599] \\
& =0.1[4.809] \\
& k_{4}=0.4809
\end{aligned}
$$

$$
\begin{aligned}
k & =\frac{1}{6}\left[k_{1}+2 k_{2}+2 k_{3}+k_{4}\right] \\
& =\frac{1}{6}[0.325+2(0.3866)+2(0.397)+0.4809] \\
& =\frac{1}{6}[0.325+0.7732+0.794+0.4809] \\
& =\frac{1}{6}[2.3731] \\
& =0.395516 \\
k & =0.3956 \\
y_{1} & =y_{0}+k \\
& =1.5+0.3956 \\
y_{1} & =1.8956, \quad x_{1}=1.1
\end{aligned}
$$

case (ii)

$$
\begin{aligned}
x_{2} & =x_{1}+h \\
& =1.1+0.1 \\
& =1.2 \\
k_{1} & =h \cdot f\left(x_{1}, y_{q}\right) \\
& =h \cdot f(1.1 .1 .5) \\
& =h \cdot f(1.1,1.8956) \\
& =h \cdot f\left[(1.1)^{2}+(1.8956)^{2}\right] \\
& =0.1[1.21+3.5933] \\
& =0.1[4.8033] \\
& =0.48033 \\
k_{1} & =h . f\left(x_{9}+\frac{h}{2}, y_{1}+\frac{k_{1}}{2}\right) \\
& =h . f\left(1.1+\frac{0.1}{2}, 1.8956+\frac{0.48033}{2}\right) \\
& =h . f(1.1+0.05,1.8956+0.240165) \\
& =h . f(1.15,2.13577) \\
& =0.1\left[(1.15)^{2}+(2.13577)^{2}\right] \\
& =0.1[1.3225+4.5615]
\end{aligned}
$$

$$
\begin{aligned}
& =0.1[5.884] \\
& k_{2}=0.5884 \\
& k_{3}=h \cdot f\left(x_{1}+\frac{h}{2}, \quad y_{1}+\frac{k_{2}}{2}\right) \\
& =h \cdot f\left(1.1+\frac{0.1}{2}, 1.8956+\frac{0.5884}{2}\right) \\
& =h \cdot f(1.1+0.05,1.8956+0.2942) \\
& =h . f(1.15,2.1898) \\
& =0.1\left[(1.15)^{2}+(2.1898)^{2}\right] \\
& =0.1[1.3225+4.7953] \\
& =0.1[6.1178] \\
& k_{3}=0.61178=0.6118 \\
& k u=h \cdot f\left(x_{1}+h, y_{1}+k_{3}\right) \\
& =k \cdot F(r .1+0.1,1.8956+0.6118) \\
& =h \cdot f(1.2,2.507 u) \\
& =0.1\left[(1.2)^{2}+(2.507 u)\right] \\
& =0.1[1.64+6.28705] \\
& =0.1[7.72705] \\
& k_{y}=0.7727 \\
& k=\frac{1}{6}\left[k_{1}+2 k_{2}+2 k_{3}+k_{4}\right] \\
& =\frac{1}{6}[0.48033+2(0.5884)+2(0.6118)+0.7727] \\
& =\frac{1}{6}[0.48033+1.1768+1.2236+0.7727] \\
& =\frac{1}{6}[3.65343] \\
& =0.608905 \\
& k=0.6089
\end{aligned}
$$

$$
\begin{aligned}
y_{2} & =y_{1}+k \\
& =1.8956+0.6089
\end{aligned}
$$

$\begin{array}{ll}\text { Late } & y_{2}=2.5045, x_{2}=1.2 \text {. } \\ \text { 3liclis } & \end{array}$
4. Given the initial value problem $y^{\prime}=1+y^{2}, y(0)=0$, yand $y(0.6)$ by $R . K$ method of $4^{\text {th }}$ order taking $t=0.2$
solus Given

$$
\begin{gather*}
y^{\prime}=1+y^{2} \\
f\left(x_{0}, y_{0}\right)=1+y^{2} \tag{1}\\
y(0)=0, \quad x_{0}=0, \quad y_{0}=0
\end{gather*}
$$

case (i)

$$
\begin{aligned}
& x_{1}=y_{0}+h \\
&=0+0.2 \\
&=0.2 \\
& k_{1} h^{f}\left(x_{0}, y_{0}\right) \\
&=h \cdot f(0,0) \\
&=0.2\left[1+0^{2}\right] \\
& k_{1}=0.2 \\
& k_{2}=h \cdot f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{1}}{2}\right) \\
&=h \cdot f\left(0+\frac{0.2}{2}, 0+\frac{0.2}{2}\right) \\
&=h \cdot f(0.1,0.1) \\
&=0.2\left[1+(0.1)^{2}\right] \\
&=0.2[1+0.01] \\
&=0.2[1.01] \\
& k_{2}=0.202 \\
& k_{3}=h \cdot f\left(x_{00}+\frac{h}{2}, y_{0}+\frac{k_{2}}{2}\right) \\
&=h . f\left(0+\frac{0.2}{2}, 0+\frac{0.202}{2}\right) \\
&=h . f(0.1,0.101) \\
&=0.2\left[1+(0.101)^{2}\right] \\
&=0.2[1+0.010201] \\
&=0.2[1.010201] \\
&=0,
\end{aligned}
$$

$$
\begin{aligned}
& k_{3}=0.2020402 \\
& k_{3}=0.202
\end{aligned}
$$

$$
k u=h_{1} f\left(x_{0}+h, y_{0}+k_{3}\right)
$$

$$
=h \cdot f(0+0.2,0+0.2020)
$$

$$
=h . P(0.2,0.2020)
$$

$$
=0.2\left[1+(0.202)^{2}\right]
$$

$$
=0.2[1+0.040804]
$$

$$
=0.2[1.040804]
$$

$$
=0.2081608
$$

$$
k_{u}=0.2082
$$

$$
k=\frac{1}{6}\left[k_{1}+2 k_{2}+2 k_{3}+k_{u}\right]
$$

$$
\begin{aligned}
& =\frac{1}{6}\left[k_{1}+2 k_{2}+2\left(k_{3}\right)\right. \\
& =\frac{1}{6}[0.2+2(0.202)+2(0.202)+0.2082]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{6}[0.2+2(0.202) \\
& =\frac{1}{6}[0.2+0.40 u+0.40 u+0.2082]
\end{aligned}
$$

$$
=\frac{1}{6}[1.2162]
$$

$$
k=0.2027
$$

$$
\begin{aligned}
y_{1} & =y_{0}+k \\
& =0+0.2027 \\
y_{1} & =0.2027 \quad x_{1}=0.2
\end{aligned}
$$

case(ii)

$$
\begin{aligned}
x_{2} & =x_{1}+h \\
& =0.2+0.2 \\
x_{2} & =0.4 \\
k_{1} & =h \cdot f\left(x_{4}, y_{1}\right) \\
& =h \cdot f(0.2,0.2027) \\
& =h \cdot\left[1+(0.2027)^{2}\right] \\
& =0.2[1+0.04108729] \\
& =0.2[1.04108729] \\
k_{1} & =0.2082
\end{aligned}
$$

$$
\begin{aligned}
& k_{2}=h \cdot f\left(x_{1}+\frac{h}{2}, y_{1}+\frac{k_{1}}{2}\right) \\
& =h \cdot f\left(0.2+\frac{0.2}{2}, 0.2027+\frac{0.2082}{2}\right) \\
& =h \cdot f(0.2+0.1,0.2027+0.1041) \\
& =h \cdot f(0.3,0.3068) \\
& =0.2\left[1+(0.3068)^{2}\right] \\
& =0.2[1+0.09412624] \\
& =0.2[1.09412624] \\
& =0.218825248 \\
& k_{2}=0.2188 \\
& k_{3}=h \cdot f\left(x_{1}+\frac{h}{2}, y_{1}+\frac{k_{2}}{2}\right) \\
& =h \cdot f\left(0.2+\frac{0.2}{2}, 0.2027+\frac{0.2188}{2}\right) \\
& =h \cdot f(0.2+0.1,0.2027+0.10948) \\
& =h \cdot f(0.3,0.31218) \\
& =0.2\left[1+(0.31218)^{2}\right] \\
& =0.2[1+0.097422075] \text {. } \\
& =0.2[1.097422015] \\
& =0.219484403 \\
& k_{3}=0.2194 \\
& k_{u}=h \cdot f\left(x_{1}+h, y_{1}+k_{3}\right) \\
& =h \cdot f(0.2+0.2,0.2027+0.2195) \\
& =h \cdot f(0.4,0.4222) \\
& =0.2\left[1+(0.4222)^{2}\right] \\
& =0.2[1+0.17825284] \\
& =0.2[1.17825284] \\
& =0.235650568 \\
& \mathrm{Ku}_{4}=0.235 \mathrm{t}
\end{aligned}
$$

$$
\begin{aligned}
k & =\frac{1}{6}\left[k_{1}+2 k_{2}+2 k 3+k_{u}\right] \\
& =\frac{1}{6}[0.2082+2(0.2188)+2(0.2195)+0.2357] \\
& =\frac{1}{6}[0.2082+0.4376+0.439+0.2357] \\
& =\frac{1}{6}[1.3205] \\
& =0.2200083333 \\
k & =0.2209 \\
y_{2} & =y_{1}+k \\
& =0.2027+0.2201 \\
y_{2} & =0.4228 \quad x_{2} 10.4
\end{aligned}
$$

caselii)

$$
\begin{aligned}
& x_{3}=x_{2}+h \\
&=0.440 .2 \\
& x_{3}=0.6 \\
& w_{1}=h \cdot f\left(x_{2}, y_{2}\right) \\
&=\text { h.f }(0.4, \cdot 0.4228) \\
&=0.2\left[1+(0.4228)^{2}\right] \\
&=0.2[1+0.17875984] \\
&=0.2[1.17875984] \\
&=0.235751968 \\
& k_{1}=0.2358 \\
& k_{2}=h \cdot f\left(x_{2}+\frac{h}{2}, y_{2}+\frac{k t}{2}\right) \\
&=h \cdot f \cdot\left(0.4+\frac{0.2}{2}, 0.4228+\frac{0.2358}{2}\right) \\
&=h \cdot f(0.5,0.4228+0.1179)^{2} \\
&=h \cdot f(0.5,0.5407) \\
&=0.2\left[1+(0.5407)^{2}\right] \\
&=0.2[1+0.29235649] \\
& 20.2[1.29235649]
\end{aligned}
$$

$$
y_{3}=y_{2}+k
$$

$$
\begin{aligned}
& =0.258471298 \\
& k_{2}=0.2585 \\
& k_{3}=h \cdot f\left(x_{2}+\frac{h}{2}, y_{2}+\frac{k_{2}}{2}\right) \\
& =h \cdot F\left(0 . u+\frac{0.2}{2}, 0.4228+\frac{0.2585}{2}\right) \\
& =h \cdot F(0.5,0.4228+0.12925) \\
& =h \cdot f(0.5,0.55205) \\
& =0.2\left[1+(0.55205)^{2}\right] \\
& =0.2[1+0.3047592202] \\
& =0.2[1.30 .4759203] \\
& =0.26095184 \\
& K_{3}=0.261 \\
& k_{4}=h \cdot f\left(x_{2}+h, y_{2}+k_{3}\right) \\
& =h \cdot f(0.4+0.2,0.4228+0.261) \\
& =h \cdot f(0.6,0.6838) \\
& =0.2\left[1+(0.6838)^{2}\right] \\
& =0.2[1+0.467582 \mathrm{um}] \\
& =0.2[1.46758244] \\
& =0.293516488 \\
& k_{4}=0.2935 \\
& k=\frac{1}{6}\left[k_{1}+2 k_{2}+2 k_{3}+k_{4}\right] \\
& =\frac{1}{6}[0.2358+2(0.2585)+2(0.261)+0.2935) \\
& =\frac{1}{6}[0.2358+0.517+0.522+0.2935) \\
& =\frac{1}{6}[1.5683] \\
& =0.261383333 \\
& K=0.2614 \\
& =0.4228+0.2614=0.6842
\end{aligned}
$$

5. find the value of $y(1-1)$ using pike method of $u^{\text {th }}$ order Ht Given that $\frac{d y}{d x}=32+y^{2}, y(1)=1$
6 find the value of $y(1.1)$ using R-K method of $4^{\text {th }}$ order given $\frac{d y}{d x}=y^{2}+x y, y(1)=1$
solus Given that

$$
\begin{aligned}
& \frac{d y}{d x}=3 x+y^{2} \\
& f\left(x_{0}, y_{0}\right)=3 x^{5}+y^{2} \rightarrow(1) \\
& y(1)=1, x_{0}=1, y_{0}=1 \\
& k_{1}=h \cdot f\left(x_{0}, y_{0}\right) \\
& =h \cdot f(1,1) \\
& =0.1[3(1)+1] \\
& =0.1[3+1] \\
& k_{1}=0.1[u]=0.4 \\
& k_{2}=h \cdot f\left(x_{0}+\frac{h}{2}, g_{0}+\frac{k_{1}}{2}\right) \\
& k_{2}=h \cdot F\left(1+\frac{0.1}{2}, 1+\frac{0.4}{2}\right) \\
& =h \cdot f(1+0.05,1+0.2) \\
& =h \cdot F(1.05,1.2) \\
& =0.1\left[3(1.05)+(1.2)^{2}\right] \\
& =0.1[3.15+1.44] \\
& =0.1[4.59] \\
& k_{2_{1}}=0.459 \\
& k_{3}=h \cdot f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{2}}{2}\right) \\
& =h \cdot f\left(1+\frac{0.1}{2}, 1+\frac{0.459}{2}\right) \\
& =h . f(1.05,1+0.2295) \\
& =h \cdot F(1.05,1.2295) \\
& =0.1\left[3(1.05)+(1.2295)^{2}\right] \\
& =0.1[3.15++.51167025]
\end{aligned}
$$

$$
\begin{aligned}
&=0.1[4.66167025] \\
&=0.466167025 \\
&=0.4662 \\
& k_{u}=h \cdot f\left(x_{0}+h, y_{0}+k_{3}\right) \\
&=h \cdot f(1+0.1,1+0.4662) \\
&=h \cdot f(1.1,1.4662) \\
&=0.1\left[3(1.1)+(1.4662)^{2}\right] \\
&=0.1[3.3+2.14974244] \\
&=0.1[5.4497424 u] \\
&=0.54 u 974244 \\
& k_{4}=0.5441 . \\
& k=\frac{1}{6} {\left[k_{1}+2 k_{2}+2 k_{3}+k u\right] } \\
&=\frac{1}{6}[0.4+2(0.459)+2(0.4662)+0.54 u 1] \\
&=\frac{1}{6}[0.4+0.918+0.9324+0.54 u 1] \\
&=\frac{1}{6}[2.7945] \\
&=0.46575 \\
& k=0.4658 \\
& x f_{1}=y_{0}+k \\
&=1+0.4658 \\
&= 1.4658
\end{aligned}
$$

6. Given that

$$
\begin{aligned}
& \begin{aligned}
\frac{d y}{d x} & =y^{2}+x y \\
f\left(x_{0}, y_{0}\right) & =y^{2}+x y \rightarrow 0 \\
y(1) & =1, \quad x_{0}=1, \quad y_{0}=1
\end{aligned} \\
& \begin{aligned}
k_{1} & =h \cdot f\left(x_{0}, y_{0}\right) \\
& =h \cdot f(1,1) \\
& =0.1[1+1(1)] \\
& =0.1 \times 2 \\
k_{1} & =0.2
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& k_{2}=h \cdot f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{1}}{2} \cdot \mu\right] \\
&=h \cdot f\left(1+\frac{0.1}{2}, 1+\frac{0.2}{2}\right) \\
&=h \cdot f(1+0.05,1+0.1) \\
&=h \cdot f(1.05,1.1) \\
&=0.1\left[(1.1)^{2}+(1.05)(1.1)\right] \\
&=0.1[1.21+1.155]] \\
&=0.1[2.365] \\
& k_{2}=0.2365 \\
& k_{3}=h \cdot f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{2}}{2}\right) \\
&=h \cdot f\left(1+\frac{0.1}{2}, 1+\frac{0.2365}{2}\right)=1 \\
&=h \cdot f(1+0.05,1+0.11825) \\
&=h . f(1.05,1.11825) \\
&=0.1\left[(1.11825)^{2}+(1.05)(1.11825)\right] \\
&=0.1[1.250483063+1.1741625] \\
&=0.1[2.424645563] \\
&=0.2424645563 \\
& k_{3}=0.2425 \\
& k_{u}=h \cdot f\left(x_{0}+h, y_{0}+k_{3}\right) \\
&=h \cdot f(1+0.1,1+0.2425) \\
&=h . f(1.1,1.2425) \\
&=0.1\left[(1.2425)^{2}+(1.1)(1.24251]\right. \\
&=0.1[1.54380625+1.36675] \\
&=0.1[2.91055625] \\
&=0.291055625 \\
& k_{4}=0.291 q \\
& k=\frac{1}{6}\left[k_{1}+2 k_{2}+2 k_{3}+k u\right] \\
&
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{6}[0.2+2(0.2365)+2(0.2425)+0.2912) \\
& =\frac{1}{6}[0.2+0.473+0.485+0.2911] \\
& =\frac{1}{6}[1.4491] \\
& =0.2415166667 \\
k & =0.2415 \\
y_{1} & =y_{0}+k \\
& =1+0.2415 \\
y_{1} & =1.2415
\end{aligned}
$$

SET - 1

I B. Tech II Semester Regular Examinations, September-2021
 MATHEMATICS-II

(Com. to All Branches)
Time: 3 hours
Max. Marks: 70

Answer any five Questions one Question from Each Unit All Questions Carry Equal Marks

\qquad

UNIT-I

1. a)

Reduce the matrix $\mathrm{A}=\left[\begin{array}{cccc}0 & 1 & 2 & -2 \\ 4 & 0 & 2 & 6 \\ 2 & 1 & 3 & 1\end{array}\right]$ to its normal form and hence find the rank.
b) Show that the only real value of λ for which the following equations have non-
trivial solution is 6 and solve them, when $\lambda=6 . \quad x+2 y+3 z=\lambda x ; 3 x+y+z=\lambda y$; $2 x+3 y+z=\lambda z$.

Or

2. a) Prove that the product of the Eigen values is equal to determinant of the matrix.
b) Test the consistency of the system $x+y+z=6, x-y+2 z=5,3 x+y+z=-8$, hence solve.

UNIT-II

3. a)

Verify Cayley -Hamilton theorem for the matrix $A=\left[\begin{array}{ccc}8 & -8 & -2 \\ 4 & -3 & -2 \\ 3 & -4 & 1\end{array}\right]$ also find A^{-1}
b) Find the nature, rank, index and signature of the quadratic from by reduce in to canonical form $x^{2}+y^{2}+2 z^{2}+2 x y-4 x z+4 y z$

Or

4. a) Find the orthogonal matrix P such that A is diagonalize where $\mathrm{A}=\left[\begin{array}{lll}2 & 0 & 4 \\ 0 & 6 & 0 \\ 4 & 0 & 2\end{array}\right]$
b) Find the nature, rank, index and signature of the quadratic from by reduce in canonical form $2 x^{2}+y^{2}-3 z^{2}+12 x y-4 x z-8 y z$.

UNIT-III

5. a) Find the real root of the equation $x=\sin x$ using bisection method.
b) Find the real root of the equation $\mathrm{x}^{3}-\mathrm{x}-1=0$ using iteration method.

Or

6. a) Find the real root of the equation $\tan x=x$ using Newton Raphson method.
b) Solve the following system of equations using Gauss-Jacobi method

$$
8 x-3 y+2 z=20, \quad 4 x+11 y-z=33,6 x+3 y+12 z=35
$$

UNIT-IV

7. a) Fit a polynomial for the following data

$$
y_{0}=-5, y_{1}=-1, y_{2}=9, y_{3}=25, y_{4}=55, y_{5}=105
$$

b) Find the $\mathrm{y}(4)$ for the following data

x	0	2	3	6
y	707	819	866	966

Or
8. a) Prove that $1+\mu^{2} \delta^{2}=\left(1+\frac{1}{2} \delta^{2}\right)^{2}$
b) Interpolate by means of Gauss's backward formula, the population of a town for the year 1974, given that

year	1939	1949	1959	1969	1979	1989
population	12	15	20	27	39	52

UNIT-V

9. a) Evaluate $\int_{0}^{1} x^{3} d x$ using Simpson's $1 / 3^{\text {rd }}$ and Simpson's $3 / 8^{\text {th }}$ Rules.
b) Find $\mathrm{y}(0.1)$ using Picard's If $\frac{d y}{d x}=2 e^{x}+y, y(0)=1$

Or
10 a) Find $\mathrm{y}(0.1), \mathrm{y}(0.2)$ using Taylor's series method If $\frac{d y}{d x}=e^{x}-2 y, \mathrm{y}(0)=1$
b) Find the solution of $\frac{d y}{d x}=x-y, \mathrm{y}(0)=1$ at $\mathrm{x}=0.1,0.2,0.3,0.4 \& 0.5$ using Euler's method.

